期刊文献+

A UNIFORM CONVERGENT PETROV-GALERKIN METHOD FOR A CLASS OF TURNING POINT PROBLEMS

原文传递
导出
摘要 In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single boundary turning point.Then we use PGFEM to solve it,where test functions are the solutions to piecewise approximate dual problems.We prove that our method has a first-order convergence rate in both L∞h norm and a discrete energy norm when we select the exact solutions to dual problems as test functions.Numerical results show that our scheme is efficient for turning point problems with different types of singularities,and the convergency coincides with our theoretical results.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2024年第5期1356-1379,共24页 计算数学(英文)
基金 supported by the NSFC(Grant No.12025104).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部