期刊文献+

NORMALIZED SOLUTIONS FOR THE GENERAL KIRCHHOFF TYPE EQUATIONS

下载PDF
导出
摘要 In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\vert^2{\rm d}x\right)\Delta u+\lambda u=g(u)~\hbox{in}~\mathbb{R}^N,u\in H^1(\mathbb{R}^N),N\geq 1,satisfying the normalization constraint\int_{\mathbb{R}^N}u^2{\rm d}x=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
作者 Wenmin LIU Xuexiu ZHONG Jinfang ZHOU 刘文民;钟学秀;周锦芳(School of Mathematical Sciences,South China Normal University,Guangzhou,510631,China;South China Research Center for Applied Mathematics and Interdisciplinary Studies&School of Mathematical Sciences,South China Normal University,Guangzhou,510631,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1886-1902,共17页 数学物理学报(B辑英文版)
基金 supported by the NSFC(12271184) the Guangzhou Basic and Applied Basic Research Foundation(2024A04J10001).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部