摘要
为提高灰色预测模型对不同特征序列的适应性,避免模型参数估计与参数应用的“非同源性”,实现模型优化与模型检验两个准则的一致性,基于背景值、建模机理、初始条件三个视角构建了一种新型近似非齐次反向累加灰色模型.研究表明,该模型对衰减序列、增长序列、齐次指数序列和非齐次指数序列都有较高的精度,是对现有灰色预测模型的有效补充.
This research aims to improving the adaptability to different feature sequences,avoiding the“non-homology”between parameter estimation and parameter application of the model,and achieving the consistency between the two criteria of model optimization and model testing.The researchers constructed a novel approximate non-homogeneous grey forecasting model with opposite-direction accumulated generation based on background value,modeling mechanism and initial condition.The result shows that the novel model has high accuracy for decaying sequence,growing sequence,homogeneous and non-homogeneous exponential sequences,which is an effective supplement to the existing grey forecasting model.
作者
李长春
陈友军
马焕钦
Li Changchun;Chen Youjun;Ma Huanqin(College of Mathematics and Information,China West Normal University,Nanchong 637009,China)
出处
《洛阳师范学院学报》
2024年第8期1-7,共7页
Journal of Luoyang Normal University
基金
四川省教育厅自然科学基金资助项目(18ZA0469)。
关键词
灰色模型
反向累加生成
近似非齐次
背景值
初始条件
grey model
opposite-direction accumulated generation
approximate non-homogeneous
background value
initial condition