期刊文献+

基于深度神经网络的脑控技术研究

Research on brain control technology based on deep neural network
下载PDF
导出
摘要 提出一种通过对脑机接口数据进行时域、频域划分的运动想象信号识别和分类系统。实验采集了4名被试者的前进、停止、左转、右转运动想象的脑电信号数据作为实验数据集,提出了两种深度学习模型,门控循环单元神经网络(GRU)和一种混合深度学习框架1DCNN-GRU模型来进行信号识别准确性对比。并对未处理的脑电信号进行快速傅里叶变换提取数据重要特征值,对实验数据集进行6∶2∶2训练-验证-测试分割。 The subject proposes a system for recognizing and classifying motor imagery signals by dividing the brain-computer interface data into time and frequency domains.The EEG signal data of forward,stop,left-turn,and right-turn motor imagery of four subjects were collected as the experimental dataset,and two deep learning models were proposed to compare the signal recognition accuracy,the two deep learning models are:gated recurrent unit neural network(GRU)and a hybrid deep learning framework 1DCNN-GRU model.The unprocessed EEG signals were also subjected to Fast Fourier Transform to extract the important feature values of the data,and the experimental dataset was subjected to 6:2:2 train-validate-test segmentation.
作者 杨昊智 钟明月 李健 Yang Haozhi;Zhong Mingyue;Li Jian(School of Mechanical and Automotuve Engineering,Guangxi University of Science and Technology,Liuzhou 545000,China)
出处 《现代计算机》 2024年第16期10-17,共8页 Modern Computer
基金 中央引导地方科技发展资金项目(2023JRZ0103) 广西科技基地和人才专项项目(桂科AD23026115) 广西高校中青年教师科研基础能力提升项目(2023KY0353) 广西科技大学博士基金项目(校科博22Z39) 广西科技大学研究生教育创新计划项目(GKYC202207)。
关键词 脑机接口 运动想象 门控循环单元 混合深度学习框架 brain-computer interface motor imagery gated recurrent unit hybrid deep learning framework
  • 相关文献

参考文献3

二级参考文献10

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部