摘要
随着电子商务的快速发展,网络购物已经开始逐渐取代线下购物,消费者们在网络购物后对产品的海量评价,成为商家分析用户消费行为的巨大财富。这种情况下,利用文本挖掘方法提取用户需求数据,并对其进行分析的研究应运而生。因此,通过网络提取京东的电脑消费者购买评论,对数据进行清洗等预处理,然后利用两种文本挖掘技术(TF-IDF与LDA)分析电脑消费者的购买需求,并对结果进行对比。进而寻找较为合适的文本挖掘方法,对电脑产品信息和消费者购买需求进行研究。
With the rapid development of e-commerce,online shopping has gradually replaced offline shopping.The massive evaluation of products by consumers after online shopping has become a huge wealth for businesses to analyze user consumption behavior.In this situation,research on using text mining methods to extract user demand data and analyze it has emerged.Therefore,the computer consumers’purchase reviews of Jingdong are extracted through the network,preprocessed the data,and then used two text mining techniques(TF-IDA and LDA)to analyze the purchasing needs of computer consumers,and compared the results.Further search for more suitable text mining methods to study computer product information and consumer purchasing needs.
作者
闫俊辉
Yan Junhui(School of Mathematics and Information Technology,Yuncheng University,Yuncheng 044000,China)
出处
《现代计算机》
2024年第16期79-83,共5页
Modern Computer