摘要
该文研究了从黎曼流形出发到叶状黎曼流形的光滑映照和相应的F-水平能量泛函,称此类能量变分的临界点为F-H-调和映照,利用F-水平应力能量张量建立了关于F-水平能量增长性条件下F-H-调和映照的刘维尔型定理.
An F-horizontal energy functional is considered for maps from a Riemannian manifold to a Riemannian manifold with Riemannian foliation.The critical maps of this energy functional are called F-H-harmonic maps.Some Liouville-type theorems are established for F-H-harmonic maps under some growth conditions of the F-horizontal energy.
作者
种田
邱紫阳
CHONG Tian;QIU Ziyang(School of Mathematics,Physics and Statistics,Shanghai Polytechnic University,Shanghai 201209,China;Xi'an Gaoxin No.1 Fengdong High School,Xi'an 710086,China)
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第5期519-525,共7页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(12001360).