期刊文献+

UNet3+深度神经网络在FPC开孔检查中的应用

Application of UNet3+Deep Neural Network in FPC Hole Inspection
下载PDF
导出
摘要 开孔工艺是柔性电路板(FPC)制造过程中的一项重要工艺流程;当前工艺流程的加工过程中,会形成毛刺以及偏位、破孔、堵孔及变形等缺陷。针对当前FPC生产过程中的开孔质量问题,提出了一套检测方法及实践,通过研究开孔毛边、毛刺、孔破、堵孔和孔变形等缺陷的形成机理和成像特征,基于UNet3+深度神经网络实现了通孔区域和毛边与毛刺区域的逐像素精确分割。提取出了毛边宽度、毛刺长度、孔圆度、孔偏和孔破等参数。给出了具体的实现方法和过程,整个FPC检查流程包含训练过程及检查过程,其中训练过程包含样本标注、学习训练、模型转换;检查过程包含开孔区域分割、缺陷区域判定、缺陷参数提取以及缺陷判别。实际生产数据验证结果表明:所提方法孔缺陷检查漏检率小于0.01%,误检率低于5%,满足FPC的自动化工业生产中质量检查需要。 The punching process is an important process in the manufacturing of flexible printed circuit(FPC).In the process of the current workflow,burrs and defects such as deflection,broken hole,blocked hole and deformation will be formed.Aiming at the current FPC hole quality inspection problem,the formation mechanism and imaging characteristics of defects such as hole burrs,burrs,hole breaks,plugged holes,and hole deformation,are studied,based on UNET3+depth neural network,pixel by pixel precise segmentation of through-hole area,burr and burr area by is realized.Parameters such as burr width,burr length,hole roundness,hole deviation and hole breakage are extracted.Specific implementation method and process are given.The whole FPC inspection process includes training process and inspection process,in which the training process includes sample labeling,learning training and model transformation.The inspection process includes the segmentation of the hole area,the determination of the defect area,the extraction of the defect parameters and the identification of the defect.The actual production data verification shows that the proposed method has a hole defect inspection with a missed alarm rate of less than 0.01%and a false alarm rate of less than 5%,which meets the quality inspection needs of FPC automated industrial production.
作者 冯立志 陈广枢 陈翊文 陈立河 Feng Lizhi;Chen Guangshu;Chen Yiwen;Chen Lihe(Zhuhai Ruixiang Intelligent Technology Co.,Ltd.,Zhuhai,Guangdong 519060,China)
出处 《机电工程技术》 2024年第9期253-256,共4页 Mechanical & Electrical Engineering Technology
关键词 FPC UNet3+ 深度学习 缺陷检测 自动化 FPC UNet3+ deep learning defect detection automation
  • 相关文献

参考文献7

二级参考文献41

  • 1张宜生,彭毅,梁书云,李德群.基于图象比对技术的柔性印刷电路板检测系统[J].计算机工程与应用,2005,41(2):220-222. 被引量:7
  • 2宁媛,李皖.图像去噪的几种方法分析比较[J].贵州工业大学学报(自然科学版),2005,34(4):63-66. 被引量:37
  • 3高军,李学伟,张建,卢秉恒.基于模板匹配的图像配准算法[J].西安交通大学学报,2007,41(3):307-311. 被引量:36
  • 4宋宇,李满天,孙立宁.基于相似度函数的图像椒盐噪声自适应滤除算法[J].自动化学报,2007,33(5):474-479. 被引量:42
  • 5刘瑞祯,于仕琪.OpenCV教程[M].北京:北京航空航天大学出版社,2007.
  • 6AYOUB G. Real-time SPC with AOI [ J ]. Surface Mount Technology Magazine ,2001,15 ( 6 ) :36 - 38.
  • 7WANG Qingxiang, LI Di, ZHANG Wujie. Detecting de- fects in golden surfaces of flexible printed circuits using optimal gabor filters [ C ]. Intelligent Information Technolo- gy Application,2008, IITA '08. Second International Sym- posium on Volume 1 ,Dec. 2008:321 -325.
  • 8CHEN Chiuhui, WANG Chunchien, LIN Chunyu, shih Yusen,TU Chungfan. Realization of defect automatic in- spection system for flexible printed circuit ( FPC ) [ C ]. Proceedings of the 35th International MATADOR Confer- ence, 2007 : 225 - 228.
  • 9D M TSAI AND B T LIN. Defect detection of gold-plated surfaces on FPCs using entropy measures [ J ]. The Inter- national Journal of Advanced Mannufacturing Technology, 2002,20 ( 6 ) :420 - 428.
  • 10HUANG Jiexian, YE Feng, DONG Zhijie, LI Di. Correc- tion of FPC solder position error based on mutual informa- tion entropy [ J ]. Circuit World, 2011,37 ( 1 ) :46 - 51.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部