摘要
本研究旨在设计一款基于YOLOX-s网络的输电线路异物检测软件,通过深度学习算法精确识别并处理潜在风险,以减轻传统人工检测的工作负担并提高检测效率。研究内容涵盖了输电线路异物检测数据集构建,以构建初始数据集为基础,通过实验设计YOLOX-s输电线路异物检测算法,完成软件设计的整体架构、各模块功能实现以及用户界面设计,确保了系统操作的直观性和便捷性。实验结果显示,该软件在异物检测的平均精度、处理速度和用户交互性方面均达到了优异的标准,显著提升了输电线路监控的自动化水平,为电网安全管理提供了有效工具。
This study aims to design a transmission line foreign object detection software based on YOLOX-s nctwork,which accurately identifies and processes potential risks through decp learning algorithms,in order to reduce the workload of traditional manual detection and improve dctcction efficicncy.Thc rescarch content covcrs thc construction of a forcign objcct detection dataset for transmission lines.Based on the construction of thc initial datasct,the YOLOX-s transmission line foreign object detection algorithm is designed through experiments.The overall architecture of the software design,implementation of various module functions,and user interface design are completed to ensure the intuitive and convenient operation of the system.The experimental results show that the software has achieved excellent standards in terms of average accuracy,processing speed,and user interaction in foreign objcct detection,significantly improving the automation level of transmission line monitoring and providing effective tools for power grid safety management.
作者
邢鹏
XING Peng(Hebei Xiong'an Pengyue Technology Co.,Ltd.Xiong'an New Area 071799,Hebei Province)
出处
《长江信息通信》
2024年第9期116-119,共4页
Changjiang Information & Communications