期刊文献+

基于深度估计和梯度下降的水下图像恢复与增强

Underwater image restoration and enhancement using depth estimation and gradient descent
原文传递
导出
摘要 由于水下介质散射和吸收等固有特性,水下图像面临图像模糊、低对比度和颜色失真等多重降质问题,严重影响视觉感知性能。针对上述问题,提出基于深度估计和梯度下降策略的水下图像恢复与增强框架(UIRENet)。首先,借助卷积、非线性激活函数模块,构建深度感知网络,实现对不同退化区域的场景深度感知,克服场景深度依赖的退化;其次,提出梯度优化策略,优化卷积网络参数,提升深度网络增强性能;最后,结合感知损失、边缘损失和水下色彩恒常损失,形成水下图像增强网络损失函数。通过在UIEB⁃90、UIEB⁃M和EUVP数据集上开展综合测试实验,验证了UIRENet框架在降低水下图像模糊度、提升视觉效果方面均显著优于目前典型水下图像增强方法,特别在客观评价指标UIQM上,相比CLAHE、ICM、GC、IBLA、DCP、ULAP、FUnIE⁃GAN、UGAN和Uformer等方法分别提高0.3700、0.6446、0.5919、1.3081、1.3032、1.1672、0.0593、0.1329和0.0934。 Due to inherent scattering and absorption,underwater images inevitably suffer from multiple degradations arising from blurring,low contrast and color distortion,thereby seriously deteriorating visual perception.In this paper,a deep learningbased underwater image restoration and enhancement framework(UIRENet)was proposed by virtue of depth esti⁃mation and gradient descent strategy.With the aid of convolutional and nonlinear activation function modules,a deep perception network was constructed to achieve scene depth perception maps for different degradation regions,thereby overcoming the dependence of scene⁃depth degradation.A gradient optimization strategy was further proposed to optimize the parameters of convolutional networks and improve the performance of deep network enhancement.Combined with perceptual,edge and underwater color constancy losses,a comprehensive loss function for underwater image enhancement networks was rationally formed.Comprehensive experiments on the UIEB⁃90,UIEB⁃M and EUVP datasets show that the UIRENet framework significantly outperforms typical underwater image enhancement methods in terms of reducing underwater image blurriness and improving visual effects.In particular,comparing to CLAHE,ICM,GC,IBLA,DCP,ULAP,FUnIE⁃GAN,UGAN and Uformer,the objective evaluation metric UIQM can be promoted by 0.3700,0.6446,0.5919,1.3081,1.3032,1.1672,0.0593,0.1329 and 0.0934,respectively.
作者 王宁 贾薇 陈延政 魏一 吴浩峻 WANG Ning;JIA Wei;CHEN Yanzheng;WEI Yi;WU Haojun(Marine Engineering College,Dalian Maritime University,Dalian 116026,China)
出处 《大连海事大学学报》 CAS CSCD 北大核心 2024年第3期1-12,共12页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(U23A20680,52271306) 国家高层次人才支持计划项目(SQ2022QB00329) 国防基础科研计划一般项目(JCKY2022410C013) 辽宁省“兴辽英才计划”领军人才项目(XLYC2202005) 大连市科技创新基金重大基础研究项目(2023JJ11CG009) 中央高校基本科研业务费专项资金项目(3132023501)。
关键词 水下图像 图像恢复 图像增强 深度估计 梯度下降策略 卷积神经网络 underwater image image restoration image enhancement depth estimation gradient descent strategy convolutional neural network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部