摘要
为避免无人船(USV)在辨识建模阶段由于动力相消而导致的参数漂移现象,本文融合并行处理和估计过大及过小初值两种措施形成一种综合应用方法,并基于该方法提出一种非线性新息辨识算法。实验结果表明,本文算法避免了水动力系数的漂移现象,同时,提高了对历史数据的再处理能力;算法具有解算能力强、辨识效率高、计算负担小的特点,为无人船在干扰环境下的稳定航行奠定了基础。
To avoid the phenomenon of parameter drift caused by dynamic cancellation in identification modeling stage of unmanned surface vessel(USV),two measures of parallel processing and estimation of too large and too small initial values were combined to form a comprehensive application method,and on this basis,a nonlinear innovation identification algorithm was proposed.Experimental results show that the proposed algorithm avoids the drift phenomenon of hydrodynamic coefficients and improves the ability to reprocess historical data.The algorithms have the characteristics of strong solving ability,high identification efficiency,and low computational burden,laying the foundation for stable navigation of USV in interference environments.
作者
隋江华
李胤甫
宋纯羽
SUI Jianghua;LI Yinfu;SONG Chunyu(Navigation and Ship Engineering College,Dalian Ocean University,Dalian 116023,China)
出处
《大连海事大学学报》
CAS
CSCD
北大核心
2024年第3期97-103,共7页
Journal of Dalian Maritime University
基金
辽宁省教育厅科学研究资助项目(LKZ0726)
辽宁省教育厅2023年度高校基本科研项目(JYTQN2023131)。
关键词
无人船(USV)
综合应用方法
非线性新息辨识
参数漂移
系统辨识
unmanned surface vessel(USV)
comprehensive application method
nonlinear innovation identification
parameter drift
system identification