期刊文献+

改进FBCSP和CNN的运动想象脑电信号分类

Classification of Motor Imagery EEG Signals Based on Improved FBCSP and CNN
下载PDF
导出
摘要 为提高运动想象脑机接口识别准确率,结合共空间模式(common spatial pattern,CSP)和卷积神经网络(convolutional neural network,CNN)方法,提出一种改进滤波器组共空间模式(filter bank common spatial pattern,FBCSP)和CNN的算法,用于多分类运动想象脑电信号识别任务。信号预处理后,使用包含重叠频带的FBCSP计算空间投影矩阵,数据经过投影得到更有区分度的特征序列。然后将特征序列以二维排列方式输入搭建的CNN模型中进行分类。所提出方法在脑机接口竞赛数据集2a和Ⅲa上验证,并和其他文献方法对比。结果表明,本文方法一定程度上提高了运动想象脑电信号的分类准确率,为运动想象研究提供了一个有效办法。 In order to improve the recognition accuracy of motor imagery brain-computer interface,common spatial pattern(CSP)and convolutional neural network(CNN)methods were combined,and an improved filter bank common spatial pattern(FBCSP)and CNN algorithm was proposed for multi-classification motor imagery EEG signal recognition tasks.After the signal was preprocessed,the spatial projection matrix was calculated using the FBCSP containing the overlapping frequency band,and the data was projected to obtain a more discriminative feature sequence.Then the feature sequence was input into the constructed CNN model in a two-dimensional arrangement for classification.The proposed method was verified on the brain-computer interface competition datasets 2a and IIIa,and compared with other literature methods.The results show that the proposed method improves the classification accuracy of motor imagery EEG signals to a certain extent,and provides an effective method for motor imagery research.
作者 马金旭 陶庆 刘景轩 赵暮超 胡学政 MA Jin-xu;TAO Qing;LIU Jing-xuan;ZHAO Mu-chao;HU Xue-zheng(School of Mechanical Engineering,Xinjiang University,Urumqi 830017,China)
出处 《科学技术与工程》 北大核心 2024年第27期11726-11732,共7页 Science Technology and Engineering
基金 国家自然科学基金(51865056) 新疆维吾尔自治区区域协同创新专项(科技援疆计划)项目(2020E0259) 新疆维吾尔自治区“天山英才”科技创新领军人才项目(2023TSYCLJ0051)。
关键词 运动想象 脑电信号 脑机接口 共空间模式 卷积神经网络 motor imagery EEG signals brain-computer interface common spatial pattern convolutional neural network
  • 相关文献

参考文献15

二级参考文献123

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部