期刊文献+

倾转旋翼动载荷高阶谐波主动控制

Tiltrotor Vibration Load Reduction Based on Higher Harmonic Control
下载PDF
导出
摘要 针对倾转旋翼动载荷抑制问题,发展了倾转旋翼/弹性机身耦合动力学计算方法,基于广义卡曼滤波方法与最优控制原理,研究了桨距高阶谐波控制(HHC,Higher Harmonic Control)在倾转旋翼减振中的应用,明确了控制流程与控制策略.以XV-15倾转旋翼机为例,开展了旋翼动载荷高阶谐波控制仿真,结果表明:在传递矩阵在线识别条件下,旋翼桨毂3Ω载荷分量显著降低,降幅最大90%,最小18%.施加高阶桨距控制后,桨尖区域升力随方位角的波动幅度明显降低,表明HHC方法主要通过削减桨叶高频气动力实现旋翼减振. To study the dynamic issue of a tiltrotor aircraft,an analytical method was established for the tiltrotor-fuselage coupled model.Based on the generalized Kalman filter method and optimal control theory,the application study of the higher harmonic control(HHC)in the vibration reduction of a tiltrotor was conducted,the control process and control strategy were constructed.Taking XV-15 as an example,the closed-loop vibration control on a tiltrotor was simulated through HHC method.The results show that 3Ωhub loads were significantly reduced with a transfer matrix on-line identification,the maximum and minimum reduction are respectively 90%and 18%.When HHC control was applied to the tiltrotor,the blade lift of the outboard section showed a significant change with rotor azimuth.It can indicate that the vibration control effect mainly comes from the reduction of the high-frequency aerodynamic force.
作者 邓旭东 郭俊贤 陈国军 Deng Xudong;Guo Junxian;Chen Guojun(China Helicopter Research and Development Institute,Jingdezhen 333001,China)
出处 《动力学与控制学报》 2024年第8期75-82,共8页 Journal of Dynamics and Control
关键词 倾转旋翼 振动载荷 高阶谐波控制 系统识别 tiltrotor vibration load higher harmonic control system identification
  • 相关文献

参考文献2

二级参考文献12

  • 1Nguyen K,Chopra I. Application of higher harmonic control to rotors operating at high speed and thrust [J]. Journal of the American Helicopter Society, 1990. 35(3):78-89.
  • 2Dipali T,Ranjan G. Induced shear actuation of helicop- ter rotor blade for active twist control [J]. Thin- Walled Structures, 2007. 45(1) :111-121.
  • 3Millott T A, Friedmann P P. Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade[R]. NASA- 4611, 1994:1-100.
  • 4Kim J S. Design and Analysis of Rotor Systems with Multiple Trailing Edge Flaps and Resonant Actuators [D]. Pennsylvania: The Pennsylvania State Universi- ty, 2005 : 1-100.
  • 5Dieterich O, Enenkl B, et al. Trailing edge flaps for active rotor control aeroelastic characteristics of the ADASYS rotor system[A]. American Helicopter So- ciety 62th Annual Forum [C]. Phoenix, AZ, 2006: 102-123.
  • 6Lim I G, Lee I. Aeroelastic analysis of rotor systems using trailing edge flaps[J]. Journal of Sound and Vi- bration, 2009,321(3-5) :525-536.
  • 7Johnson W. Helicopter Theory[M]. Dover Publica- tions, 1994.
  • 8Johnson W. A general free wake geometry calculation for wings and rotors[A]. The American Helicopter Society 51st Annual Forum Fort Worth[C]. Texas, 1995:17-29.
  • 9Leishman J G, Beddoes,T S. A semi-empirical model for dynamic stall[A]. 42ncl Annual Forum of the A- merican Helicopter Society[C]. Washington D C, 1986:3-17.
  • 10Hariharan N, Leishman J. Unsteady aerodynamics of a flapped airfoil in subsonic flow by indicial concepts [A]. The 36th Structrues, Structural Dynamics, and Materials Conference[C]. 1995:613-634.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部