期刊文献+

椭圆曲线y^(2)=x^(3)+2021x-4050的整数点

Integral Points on Elliptic Curve y^(2)=x^(3)+2021x-4050
下载PDF
导出
摘要 运用同余法、Pell方程解的性质等初等方法讨论了椭圆曲线y^(2)=x^(3)+2021x-4050的整数点的问题,证明了椭圆曲线其仅有整数点(x,y)=(2,0)。 By using the elementary methods of congruence and the properties of solutions of Pell equation,the problem of integer points of elliptic curve y^(2)=x^(3)+2021x-4050 was discussed,and it was proved that the elliptic curve has only one integral point(x,y)=2.0.
作者 高丽 李改利 GAO Li;LI Gaili(College of Information Engineering,Xi'an Fanyi University,Xi'an 710105,China;College of Mathematics and Computer Science,Yan'an University,Yan'an 716000,China)
出处 《沈阳大学学报(自然科学版)》 CAS 2024年第5期450-454,共5页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(62261055) 国家自然科学基金资助项目(11471007)。
关键词 椭圆曲线 整数点 PELL方程 解的性质 同余 elliptic curve integral point Pell equation properties of solutions congruence
  • 相关文献

参考文献13

二级参考文献59

  • 1孙琦.关于丢番图方程中的柯召—Terjanian—Rotkiewicz方法[J].数学进展,1989,18(1):1-4. 被引量:4
  • 2Baker A.Linear forms in the logarithms of algebraic number Ⅰ.Mathematika,1966.13:204-216; Ⅱ ibid,1967,14:102-107:Ⅲ ibid,1967.14:220-228; Ⅳ ibid; 1968,15:204-216.
  • 3Stroeker R J,Tzanakis N.Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms.Acta Arith,1994,29(2):177-196.
  • 4Stroeker R J,Tzanakis N.On the elliptic logarithm method for elliptic diophantine equations:reflections and an improvement.Experimental Mathemetics,1999,8(2):135-149.
  • 5Stroeker R J,Tzanakis N.Computing all integer solutions of a genus 1 equation.Math Comp.,2003,72:1917-1933.
  • 6Bremner A,Tzanakis N.Integral points on y2=x3-7x+10.Math Comp.,1983,41(164):731-741.
  • 7Zhu Hui Lin,Chen Jian Hun.Integral point on a class of elliptic curve.Wuhan University-Journal of Natural Sciences,2006,11(3):477-480.
  • 8Zhu Hui Lin,Chen Jian Hua.Integral point on certain elliptic curve.Padova:Rend.Sem.Mat.Univ.,2008,119:1-20.
  • 9Zagier D.Large integral point on elliptic curves.Math Comp.,1987,48(177):425-536.
  • 10Hua Luo Geng.Introduction to number theory.Beijing:Science Press,1979.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部