摘要
运用同余法、Pell方程解的性质等初等方法讨论了椭圆曲线y^(2)=x^(3)+2021x-4050的整数点的问题,证明了椭圆曲线其仅有整数点(x,y)=(2,0)。
By using the elementary methods of congruence and the properties of solutions of Pell equation,the problem of integer points of elliptic curve y^(2)=x^(3)+2021x-4050 was discussed,and it was proved that the elliptic curve has only one integral point(x,y)=2.0.
作者
高丽
李改利
GAO Li;LI Gaili(College of Information Engineering,Xi'an Fanyi University,Xi'an 710105,China;College of Mathematics and Computer Science,Yan'an University,Yan'an 716000,China)
出处
《沈阳大学学报(自然科学版)》
CAS
2024年第5期450-454,共5页
Journal of Shenyang University:Natural Science
基金
国家自然科学基金资助项目(62261055)
国家自然科学基金资助项目(11471007)。
关键词
椭圆曲线
整数点
PELL方程
解的性质
同余
elliptic curve
integral point
Pell equation
properties of solutions
congruence