摘要
基于时域耦合模型理论的吸收体研究,不适用于所有模型,且基于此理论的设计过程复杂,难以在工业工程得到广泛应用。因此提出一种基于声阻抗匹配理论的弹性吸收体的研究方法,并通过理论计算、数值仿真以及实验对吸收体的吸收曲线进行验证。结果表明:本文提出的方法能够快速、简便地实现弹性吸收体的结构设计,无需额外附加阻尼材料,更有利于满足航空工程中对于结构轻量化的要求,为振动波吸收领域,尤其是弯曲波的高效吸收和减振设计研究带来了新的可能性。
The study on the absorber of flexural waves based on time-domine model coupling theory is not applica-ble to all models,and has complex design process,which is difficult for widespread application in industrial engi-neering.Therefore,a research method for elastic absorbers based on the acoustic impedance matching theory is pro-posed.The absorption curve of absorbers is verified with theoretical calculations,numerical simulations and experi-ment.The results show that the proposed method can quickly and easily realize the structural design of elastic ab-sorbers,bringing new possibilities for the research on flexural waves absorption and vibration reduction design.The theoretical method and absorption structure proposed in this paper do not need additional damping materials,which is more conducive to meet the requirements of lightweight structures in aeronautical engineering.At the same time,it brings new possibilities for the field of vibration wave absorption,especially the design of efficient absorption and vibration reduction of curved waves.
作者
王正东
卡主草
胡林欢
燕群
延浩
高洁
田野
李勇
WANG Zhengdong;KA Zhucao;HU Linhuan;YAN Qun;YAN Hao;GAO Jie;TIAN Ye;LI Yong(Shaanxi Key Laboratory of Ultrasonics,Shaanxi Normal University,Xi’an 710119,China;Key Laboratory of Aeronautical Science and Technology for Aeroacoustics and Vibration,Aircraft Strength Research Institute of China,Xi’an 710065,China;Institute of Acoustics,Tongji University,Shanghai 200092,China)
出处
《航空工程进展》
CSCD
2024年第5期79-85,F0002,共8页
Advances in Aeronautical Science and Engineering
基金
国家自然科学基金(11904221)
陕西省自然科学基础研究计划资助项目(2024JC-YBMS-047)
博士后创新人才支持计划(BX20190193)
中国博士后科学基金面上资助(2019M663612)
西安市科协青年人才托举计划项目(095920221302)。
关键词
弯曲波完全吸收
梁板结构
声阻抗匹配
吸收曲线
减振设计
无阻尼吸收
complete absorption of flexural waves
beam-plate structures
acoustic impedance matching
absorp-tion curve
vibration damping design
non-damped absorption