摘要
传统的有限元模型存在计算成本高、黑箱操作多、缺乏自主知识产权等问题。采用解析法研究基础谐波激励下贴敷宏纤维复合材料(MFC)片的飞机壁板振动响应的预测问题;基于经典层合板理论、机电耦合本构方程和能量法,建立基础谐波激励下MFC-壁板的解析模型;利用速度反馈法和模态叠加原理,实现对该激励条件下结构系统在主动控制前后振动响应的求解;结合文献和组建的振动测试系统获得的实验数据,对该解析模型及其预测结果进行详细验证。结果表明:相较于文献结果,模型等固有频率计算偏差最大不超过2%,模型预测获得的前两阶共振响应的最大误差不超过8.6%,均在误差允许的范围内。
The traditional finite element model has the problems of high computational cost,more black-box opera-tion,and lack of independent intellectual right.The analytical method is used to study the prediction of the vibration response of aircraft wall panels with macro fiber composite(MFC)patches under basic harmonic excitation.Based on classical laminate plate theory,electro mechanical coupling constitutive equations,and the energy method,the analytical model of the MFC-panel system under basic harmonic excitation is established.By employing velocity feedback control method and modal superposition principle,the vibration response of the structure system before and after active control under such an excitation load is successfully solved.The analytical model and its predictive results are extensively validated through the integration of literature data and experimental data obtained from a vi-bration testing system that is assembled.The results show that,compared to the literature results,the maximum deviation in the calculation of natural frequencies by the proposed model is less than 2%.Additionally,the maxi-mum error in predicting the first two order resonance responses by the model is less than 8.6%,and both of them are within an acceptable range.
作者
李凯翔
乔洲
张飞
李晖
韩清凯
LI Kaixiang;QIAO Zhou;ZHANG Fei;LI Hui;HAN Qingkai(Key Laboratory of Aeronautical Science and Technology for Aeroacoustics and Vibration,Aircraft Strength Research Institute of China,Xi’an 710065,China;School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110819,China)
出处
《航空工程进展》
CSCD
2024年第5期106-113,共8页
Advances in Aeronautical Science and Engineering
基金
国家自然科学基金(52175079)
中央高校基本科研业务费专项资金(N2103026)。
关键词
宏纤维复合材料
解析法
飞机壁板
基础谐波激励
振动
macro fiber composite
analytical method
aircraft panel
fundamental harmonic excitation
vibration