期刊文献+

中国人工智能发展的时空网络结构及驱动因子研究

Research on the Spatio-temporal Network Structure and Driving Factors of Artificial Intelligence Development in China
下载PDF
导出
摘要 通过直觉模糊层次分析法和动态灰色关联法对中国30个省(区、市)在2011—2021年人工智能发展水平进行评测;通过核密度、趋势面和社会网络分析方法分析中国人工智能发展的时间和空间结构,并探测网络空间分异的驱动因子以了解中国人工智能发展状况。结果显示:中国人工智能发展整体水平呈现明显的逐年增长态势,其中2019、2020和2021年增长速度最快。整体发展指数呈现东部大于西部、南部大于北部的空间格局。空间网络的网络等级度和网络效率逐年增加,但网络连接数和网络密度有逐年减少趋势。中部、西部和东北地区板块类型为主受益板块和双向溢出板块,东部地区板块类型为经纪人板块和净溢出板块。驱动因子中R&D经费投入强度、经济发展水平和信息固定资产投资为中国人工智能发展的主要驱动因子。当R&D经费投入强度和经济发展水平这两个驱动因子与其他驱动因子交互时,对中国人工智能发展水平的倍增效应最为显著。 Using the methods of the Intuitionistic Fuzzy Analytic Hierarchy Process and the Dynamic Grey Relational Analysis,this study evaluates the level of artificial intelligence(AI)development in 30 provinces(autonomous regions,municipalities)in China from 2011 to 2021.It analyzes the temporal and spatial structure of China's AI development through analysis on kernel density,trend surface and social network,and explores the driving factors of network spatial differentiation.The results show that:the overall level of China's AI development shows an obvious annual growth trend,with the fastest growth rates in 2019,2020 and 2021;the overall development index presents a spatial pattern in which the east is higher than the west,and the south is higher than the north;the spatial pattern shows that AI development indices are higher in the eastern and southern regions compared to the western and northern ones;network hierarchy and efficiency increase annually,though network connectivity and density show a decreasing trend;the central,western,and northeastern regions are classified as main beneficiary blocks and two-way spillover blocks,whereas the eastern regions are categorized as broker blocks and net spillover blocks;key drivers,such as the intensity of R&D expenditure,economic development level,and investment in information fixed assets,are identified as major factors influencing AI development in China;when the two driving factors of R&D expenditure intensity and economic development level interact with other driving factors,the multiplier effect on China's AI development level is the most significant.
作者 张丽平 周小亮 ZHANG Li-ping;ZHOU Xiao-liang(School of Economics and Trade,Fujian Jiangxia University,Fuzhou,350108,China;School of Economics and Management,Fuzhou University,Fuzhou,350108,China)
出处 《福建江夏学院学报》 2024年第4期40-54,共15页 Journal of Fujian Jiangxia University
基金 福建省社会科学规划项目“虚拟社区用户产品推荐行为机制及影响研究”(FJ2022BF041) 福建省教育系统哲学社会科学研究项目“高质量发展的理论阐述与实践路径研究”(JAS22084)。
关键词 人工智能发展 时间网络结构 空间网络结构 驱动因子 因子交互作用 artificial intelligence development temporal network structure spatial network structure driving factors interaction effect of driving factors
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部