摘要
心理障碍是影响新时代大学生的首要健康问题,目前尚无可用于筛查大学生心理障碍的早期预测工具。人工智能技术的迅速发展为心理健康领域的研究提供新的思路和方法。本研究基于浙江省不同层次高校在校生的样本数据资料,通过构建CNN-LSTM深度学习模型来识别大学生心理障碍的风险因素,并基于目标预测变量将CNN-LSTM与SVM、BP和CNN构建的模型进行比较,通过对比AUC等多个预测效果评价指标,最终验证构建的CNN-LSTM模型在大学生心理障碍预测上表现出最好的性能,且具有实际用于筛查大学生心理障碍的应用潜力。
Psychological disorders are the primary health issue affecting college students in the new era,and there is currently no early predictive tool available for screening psychological disorders among college students.The rapid development of artificial intelligence technology has provided new ideas and methods for research in the field of mental health.This study is based on sample data of students from different levels of universities in Zhejiang province.By constructing a CNN-LSTM deep learning model to identify risk factors for psychological disorders in college students,and comparing CNN-LSTM with models constructed by SVM,BP,and CNN based on target predictive variables,multiple predictive performance evaluation indicators such as AUC are compared.The final validation of the constructed CNN-LSTM model shows the best performance in predicting psychological disorders among college students,and has practical application potential for screening psychological disorders among college students.
作者
孙馨露
闵雪
徐静
Sun Xinlu;Min Xue;Xu Jing(Zhejiang Business College,Hangzhou 310053,China)
出处
《天津职业大学学报》
2024年第5期74-80,共7页
Journal of Tianjin Vocational Institute
基金
2023年度浙江省教育厅高等学校访问工程师校企合作项目“基于深度学习和体感运动游戏的大学生心理预测干预系统研究”(编号:FG2023077,主持人:孙馨露)
浙江省高职教育“十四五”第二批教学改革项目“基于生成式AI的高职学生个性化心理健康教育与危机干预模式研究”(编号:jg20240135,主持人:孙馨露)的阶段性研究成果。
关键词
心理障碍预测
深度学习
大学生
CNN
LSTM
prediction of psychological disorders
deep learning
college students
CNN
LSTM