期刊文献+

基于遗传算法的输电线路无人机巡检任务智能分配协同控制系统设计

Design of cooperative control system for intelligent assignment of transmission line UAV inspection task based on genetic algorithm
原文传递
导出
摘要 输电线路无人机(Unmanned Aerial Vehicle,UAV)巡检质量对于线路安全和工作效率等都具有重要的影响,巡检质量的提升和保障尤为重要。基于此,研究结合模拟退火算法(Simulated Annealin, SA)和遗传算法(Genetic Algorithm)构建了GAISA算法,并基于GAISA设计了一个输电线路无人机巡检任务智能分配协同控制系统。实验结果表明,通过求解任务分配算例时,在迭代次数接近20后,相比遗传和模拟退火分别低于400和250左右。从实验结果中可以看出,GAISA从不同算法优化结果和求解不同规模的MTSP问题的结果均体现出一定的优越性,体现出其一定的有效性与优势性。研究提出的算法引入了协同控制机制,并针对输电线路特点进行优化,由此该方法有望解决结合人工智能和数据分析技术,实现线路巡检的高效、准确和安全。 The quality of unmanned aerial vehicle inspection on transmission lines has an important impact on line safety and work efficiency,and the improvement and guarantee of inspection quality are particularly important.Based on this,the study combined Simulated Annealing(SA)and Genetic Algorithm to construct the GAISA algorithm,and designed an intelligent allocation and collaborative control system for unmanned aerial vehicle inspection tasks on transmission lines based on GAISA.The experimental results show that when solving the task allocation example,after the number of iterations approaches 20,compared to genetic algorithm and simulated annealing,it is around 400 and 250,respectively.From the experimental results,it can be seen that GAISA exhibits certain advantages in optimizing results from different algorithms and solving MTSP problems of different scales,demonstrating its effectiveness and advantages.The algorithm proposed in the study introduces a collaborative control mechanism and is optimized based on the characteristics of transmission lines.Therefore,this method is expected to solve the problem of combining artificial intelligence and data analysis technology to achieve efficient,accurate,and safe line inspection.
作者 赵恩来 苏鑫磊 董衍旭 潘士通 王玉玲 杨君 ZHAO Enlai;SU Xinlei;DONG Yanxu;PAN Shitong;WANG Yuling;YANG Jun(Beijing SGITG Accenture Information Technology Center Co.,Ltd.,Beijing 100052,China;School of Computer Science,Harbin University of Science and Technology,Harbin 150080,China;State Grid Fujian Information&Telecommunication Company,Fuzhou 350001,China)
出处 《自动化与仪器仪表》 2024年第9期64-68,共5页 Automation & Instrumentation
基金 国网人工智能与智慧物联云边协同技术研究和体系设计项目(172354541)。
关键词 遗传算法 控制系统 任务分配 输电线路 GAISA genetic algorithm control system simulated annealing algorithm task allocation transmission lines GAISA
  • 相关文献

参考文献15

二级参考文献117

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部