期刊文献+

基于人工智能技术的配电系统图像分类模型安全评估体系构建与测试研究

Research on the construction and testing of security assessment system of image classification modelfor power distribution system based on artificial intelligence technology
原文传递
导出
摘要 深度学习是利用大型数据集的高效训练算法,在新型智能电力系统中得到了广泛应用。然而,目前电力系统人工智能模型的深度神经网络训练阶段不完善,容易受到对抗性样本的影响,导致深度神经网络出现错误分类。因此,在新型电力系统中,确保基于配电系统图像多分类深度神经网络模型的安全性至关重要。本文首先确定了针对配电系统图像多分类的深度神经网络的对抗空间,并根据对模型的输入和输出之间映射的精确理解来制作对抗者样本。然后,定义了一个对抗攻击能力指标来评估不同样本类别对对抗性扰动的安全性。最后,通过定义良性输入和目标分类之间的距离的预防性措施,实现了对对抗性样本的防御。 Deep learning is an efficient training algorithm using large data sets,which is widely used in new intelligent power systems.However,the current deep neural network training stage of artificial intelligence models for power systems is imperfect and vulnerable to adversarial samples,which leads to misclassification of deep neural networks.Therefore,it is crucial to ensure the security of multi-classification deep neural network models based on distribution system images in new power systems.In this paper,we firstly determine the adversarial space of a deep neural network for multi-classification of distribution system images and produce adversary samples based on an accurate understanding of the mapping between the inputs and outputs of the model.Secondly,an adversarial attack capability metric is defined to evaluate the security of different sample classes against adversarial perturbations.Finally,defense against adversarial samples is achieved by defining a precautionary measure of the distance between benign inputs and target classifications.
作者 郑州 钱健 李扬笛 谢炜 马腾 周晨曦 赵志超 ZHEN Zhou;QIAN Jian;LI Yangdi;XIE Wei;MA Teng;ZHOU Chenxi;ZHAO Zhichao(State Grid Fujian Electric Power Co.,Ltd.,Electric Power Science Research Institute,Fuzhou,Fujian,350000,China)
出处 《自动化与仪器仪表》 2024年第9期339-344,共6页 Automation & Instrumentation
关键词 智能电力系统 对抗性样本 深度神经网络 配电系统图像多分类 安全性 intelligent power systems adversarial samples deep neural networks of power distribution system image multi-classification security
  • 相关文献

参考文献4

二级参考文献52

  • 1杜小虎,吴宏明,易子博,李莎莎,马俊,余杰.文本对抗样本攻击与防御技术综述[J].中文信息学报,2021,35(8):1-15. 被引量:7
  • 2陈振宇,刘金波,李晨,季晓慧,李大鹏,黄运豪,狄方春,高兴宇,徐立中.基于LSTM与XGBoost组合模型的超短期电力负荷预测[J].电网技术,2020,44(2):614-620. 被引量:224
  • 3吕海灿,王伟峰,赵兵,张毅,郭秋婷,胡伟.基于Wide&Deep-LSTM模型的短期台区负荷预测[J].电网技术,2020,44(2):428-436. 被引量:53
  • 4陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 5BASS T. Intrusion detection systems & multisensory data fusion: creating cyberspace situational awareness [J]. Communications of the ACM, 2000, 43(4): 99-105.
  • 6D'AMBROSIO B. Security Situation Assessment and Response Evaluation (SSARE) [C]// DISCEX'01: Proceedings of 2001 DARPA Information Survivability Conference & Exposition. Washington, D.C.: IEEE Computer Society, 2001: 387-394.
  • 7ABAD C, YURCIK W. UCLog+: a security situational awareness system for incident storage, querying, and correlation [C]// ICTSM 2006: Proceedings of the 14th International Conference on Telecommunication Systems Modeling and Analysis. Washington, D.C.: IEEE Computer Society, 2006: 316-322.
  • 8ONWUBIKO C, OWENS T. Situational awareness in computer network defense principles, methods and applications [M]. Hershey: IGI Global Snippet, 2012: 125-137.
  • 9KAVOUSI F, AKBARI B. Automatic learning of attack behavior patterns using Bayesian networks [C]// IST'2012: Proceedings of the 6th International Symposium on Telecommunications. Washington, D.C.: IEEE Computer Society, 2012: 999-1004.
  • 10韦勇,连一峰,冯登国.基于信息融合的网络安全态势评估模型[J].计算机研究与发展,2009,46(3):353-362. 被引量:165

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部