期刊文献+

基于离散采样模型的三自由度双旋翼直升机的控制器设计

Controller Design of a 3-DOF Tandem-Rotor Model Helicopter Based on Discretized Sampling Plant
原文传递
导出
摘要 三自由度纵列式双旋翼直升机模型是动力学系统研究中的一类重要实验对象,也是研究直升机飞行控制技术的平台.文章首先针对非线性三自由度纵列式直升机模型的系统描述,在其标准形描述和一般采样保持条件下,导出了比经典的Euler模型更精确的非线性近似离散时间模型,并进一步计算可得出,它们的近似离散模型的局部截断误差和全局截断误差分别为T5和T2,其中T为采样周期.其次,文章对非线性三自由度双旋翼直升机进行了系统辨识及其相应的简单讨论.最后,在导出的近似直升机离散采样模型的基础上,对非线性三自由度双旋翼直升机,文章给出了连续时间输入控制设计和李雅普诺夫再设计两种方法来开展对比研究,并通过实例表明李雅普诺夫再设计可增强系统的控制性能. The paper derives an approximate discrete-time model for a nonlinear 3-DOF tandem-rotor model helicopter in the case of the ordinary input and hold,such as zero-order hold,which is accurate to some order in the sampling periods.More importantly,the proposed model is more accurate than the classic Euler approximation.We also show how a particular strategy can be used to approximate the system output and its derivatives in such a way to obtain a local truncation error and a global truncation error,between the output of the resulting sampled-data model and the true continuous-time system output,of order and,respectively,where is the sampling period.Furthermore,we also explore the implications of these results in nonlinear system identification,which the corresponding discussion has been obtained.Finally,these two design methods,such as emulation input and Lyapunov redesign,have been considered for a nonlinear 3-DOF tandem-rotor model helicopter.It is shown that the Lyapunov redesign implementation model can achieve a better control performance.
作者 迟楠 曾诚 CHI Nan;ZENG Cheng(School of Science,Guizhou Institute of Technology,Guiyang 550003)
出处 《系统科学与数学》 CSCD 北大核心 2024年第9期2588-2602,共15页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(62163008,61763004) 贵州省科技厅重点项目(黔科合基础[2020]1Z054) 贵州理工学院博士启动基金(XJGC20150411)资助课题。
关键词 三自由度双旋翼直升机 离散采样分析 系统辨识 采样控制器设计 3-DOF tandem-rotor helicopter discretization sampling analysis system identification sampled-data controller design
  • 相关文献

参考文献3

二级参考文献154

  • 1梁山,石飞光章,石为人,鲜晓东.离散时间MIMO系统极限零点的稳定性[J].自动化学报,2007,33(4):439-442. 被引量:4
  • 2蔡秀珊,汪晓东,吕干云.具有零动态仿射非线性系统控制Lyapunov函数的构造[J].控制理论与应用,2007,24(3):391-395. 被引量:7
  • 3ISIDORI A.The zero dynamics of a nonlinear system:from the origin to the latest progresses of a long successful story[J].European Journal of Control,2013,19(5):369-378.
  • 4GOODWIN G C.Digital control:past,present and future[M] //The Evolution of Control Science.Genova:Consiglio Nazionate Delle Ricerche,2008.
  • 5GOODWIN G C,YUZ J I,AGUERO J C,et al.Sampling and sampled-data models[C] //American Control Conference.Balti-more,USA:IEEE,2010:1-20.
  • 6BYRNES C I,GILLIAM D S,HU C,et al.Zero dynamics boundary control for regulation of the Kuramoto-Sivashinsky eqnarray[J].Mathematical and Computer Modelling,2010,52(5):875-891.
  • 7YANG C D.Nonlinear zero dynamics of orbital motion[J].Chaos,Solitons & Fractals,2008,37(4):1158-1171.
  • 8HELMKE U.Global convergence of nonlinear cascade flows with Morse-Bott zero dynamics[J].Systems & Control Letters,2009,58(6):389-394.
  • 9DACIC D B,NE(SID) D,KOKOTOVIC P V.Path-following for nonlinear systems with unstable zero dynamics[J].IEEE Transactions on Automatic Control,2007,52(3):481-487.
  • 10KHODABAKHSHIAN A,MORSHED J M,PARASTEGARI M.Coordinated design of STATCOM and excitation system controllers for multi-machine power systems using zero dynamics method[J].International Journal of Electrical Power & Energy Systems,2013,49(6):269-279.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部