期刊文献+

基于KZ滤波和LSTM的上海市O_(3)预测模型

Predictive Model for O_(3)in Shanghai Based on the KZ Filtering Technique and LSTM
原文传递
导出
摘要 针对臭氧长时间序列预测精度及气象特征选择问题,提出通过Kolmogorov Zurbenko(KZ)滤波分解臭氧(O_(3))原始序列,利用支持向量回归(SVR)改进的最大最小冗余(mRMR)方法筛选气象特征,之后采用长短期记忆网络(LSTM)实现对上海2023年5~8月静安监测站(城市)、浦东川沙(城郊)和淀山湖(郊区)的O_(3)预测.结果表明,特征筛选得到对O_(3)基准和短期分量的最优组合包括气压、温度、湿度、边界层高度和风向.基于LSTM模型对特征筛选后的不同时间分量进行预测,静安站、浦东川沙站和淀山湖站R2分别为0.86、0.83和0.85,RMSE分别为18.26、18.74和20.02μg·m^(-3),表明通过分解原始O_(3)序列能够提高预测精度,特征筛选后的组合能够保持模型的预测性能. In this study,a Kolmogorov-Zurbenko(KZ)filter was proposed to decompose the original ozone(O_(3))sequence to improve the accuracy of ozone long-term series prediction and select relevant meteorological features.Furthermore,the enhanced maximal minimal redundancy(mRMR)feature selection technique was combined with the support vector regression(SVR)approach to select the most illuminating meteorological features.Subsequently,from May to August 2023,during high ozone concentration periods,a long short-term memory network(LSTM)was utilized to assess and predict high ozone concentration periods at the monitoring stations of Jingan(urban area),Pudong-Chuansha(suburban area),and Dianshan Lake(suburban area)in Shanghai.The results showed that pressure,temperature,humidity,boundary layer height,and wind direction were the best combinations of O_(3)baseline and short-term components,as chosen by feature screening.The R2 values for Jingan Station,Pudong-Chuansha Station,and Dianshan Lake Station were 0.86,0.83,and 0.85,respectively.The RMSE values were 18.26,18.74,and 20.02μg·m^(-3),respectively.These findings suggest that decomposing the original O_(3)sequence improved the prediction accuracy of ozone concentrations.Additionally,as indicated by the R^(2) and RMSE values found for every monitoring station,feature screening preserved the model’s predictive performance.
作者 吴玲霞 安俊琳 金丹 WU Ling-xia;AN Jun-lin;JIN Dan(Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science and Technology,Nanjing 210044,China;Shanghai Environmental Monitoring Center,Shanghai 200235,China)
出处 《环境科学》 EI CAS CSCD 北大核心 2024年第10期5729-5739,共11页 Environmental Science
基金 国家自然科学基金项目(42075177) 国家重点研发计划项目(2017YFC0210003)。
关键词 O_(3)预测 KZ滤波 LSTM 最大最小冗余 灰色关联性 支持向量回归(SVR) O_(3)prediction KZ filter LSTM maximal relevance and minimal redundancy gray correlation support vector regression(SVR)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部