期刊文献+

翼型尾缘开口对风力机叶片气动特性的影响

Influence of aerodynamic performance on airfoil opening trailing edge of wind turbine blades
下载PDF
导出
摘要 基于工程应用中翼型尾缘开口对风力机叶片气动特性的影响,文章建立了6.7 MW水平轴风力机动力学模型,采用CFD和BEM联合仿真的方法探究了翼型尾缘开口为0,0.1%c,0.3%c,0.5%c时对风力机叶片气动特性的影响。结果表明:随着尾缘开口的增加,翼型的升力系数、升阻比具有一定程度的增加;阻力系数在失速前几乎不变,失速后略微变化;翼型发生失速的角度为12°,不同开口翼型失速分离点的位置略向后缘移动。此外,在3-D湍流风作用下,大型叶片变形和轴向力均略微增大,发电量最大增加了0.88%。 Based on the practical problems,a dynamic model of 6.7 MW wind turbine was established,and the influence of opening trailing edge of 0,0.1%c,0.3%c,0.5%c on blade aerodynamics was investigated by CFD and BEM.The result shows that the lift coefficient and lift-drag ratio of the airfoil significantly increase with the increase of the opening trailing edge;the drag coefficient is almost unchanged before stall,but slightly changed after stall;the stall angle of the airfoil is 12°and the position of the stall separation point of the airfoil moves slightly backward.Otherwise,under the influence of turbulent wind,the blade deformation and axial force increased slightly,and the maximum power generation increased by 0.88%.
作者 程帅兵 陈德龙 宗旺旺 于永峰 黄辉秀 Cheng Shuaibing;Chen Delong;Zong Wangwang;Yu Yongfeng;Huang huixiu(Lianyungang Zhongfu Lianzhong Composites Group Co.,Ltd.,Lianyungang 222006,China;Jiangsu Key Laboratory of Offshore Wind Turbine Blade Design and Manufacture Technology,Lianyungang 222006,China;School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai 200092,China)
出处 《可再生能源》 CAS CSCD 北大核心 2024年第10期1348-1354,共7页 Renewable Energy Resources
基金 江苏省重大研发项目(BE2021014-3) 江苏省碳达峰碳中和科技创新专项资金(重大科技成果转化)项目(BA2022113)。
关键词 翼型 升力系数 升阻比 失速分离点 叶片变形 airfoil lift coefficient lift-drag ratio stall separation point blade deformation
  • 相关文献

参考文献7

二级参考文献46

  • 1蔡畅,左志钢,刘树红,王旭,吴玉林.波状前缘对风力机翼型失速性能影响数值分析[J].工程热物理学报,2015,36(3):531-534. 被引量:7
  • 2胡丹梅,杜朝辉,朱春建.水平轴风力机静态失速特性[J].太阳能学报,2006,27(3):217-222. 被引量:10
  • 3潘艺,周鹏展,王进.风力发电机叶片技术发展概述[J].湖南工业大学学报,2007,21(3):48-51. 被引量:60
  • 4李春,叶舟,高伟,等.现代大型风力机设计原理[M].上海:上海科学技术出版社,2012.
  • 5FISCHER G R, KIPOUROS T, SAVILL A M. Multi-objective optimization of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables[J]. Renewable Energy, 2014, 62: 506-515.
  • 6BAVANISH B, THYAGARAJAN K. Optimization of power coefficient on a horizontal axis wind turbine using BEM theory[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 169-182.
  • 7GABRIELE B, MARCO R C, ERNESTO B. Optimal spanwise chord and thickness distribution for a Troposkien Darrieus wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 125: 13-21.
  • 8VESEL R W, MCNAMARA J J. Performance enhancement and load reduction of a 5 MW wind turbine blade[J]. Renewable Energy, 2014, 66: 391-401.
  • 9DEB K. Multi-objective optimization using evolutionary algorithms[M]. Chichester. John Wiley & Sons, 2001.
  • 10ISHIBUCHI H, MURATA T, TI3RKSEN I B. Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems[J]. Fuzzy Sets and Systems, 1997, 89(2): 135-150.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部