摘要
无人机(Unmanned Aerial Vehicle,UAV)遥感图像具有成像距离远、分辨率高和目标密集等特点。本文旨在开发一种基于深度神经网络和注意力机制的学习模型,以改善无人机遥感视角下微小目标检测的性能。本研究改进了YOLOv5,并提出了一种名为YOLOv5-SATC的新无人机遥感图像微小目标检测算法。实验结果表明,该算法在NWPU数据集上优于其他主流目标检测方法。
Unmanned Aerial Vehicle(UAV)remote sensing images have the characteristics of long imaging distances,high resolutions,and dense target distribution.This paper aims to develop a learning model based on deep neural networks and attention mechanisms to improve the performance of small object detection in UAV remote sensing perspectives.This study improve YOLOv5 and propose a new algorithm for small object detection in UAV remote sensing images,named YOLOv5-SATC.Finally,we conducted a series of comparative experiments on the NWPU dataset,and those results demonstrate that our proposed algorithm outperforms other mainstream object detection methods on the NWPU dataset.
作者
郭明全
赵景服
GUO Mingquan;ZHAO Jingfu(Zhongyuan University of Technology,Zhengzhou Henan 450007,China)
出处
《信息与电脑》
2024年第15期18-20,共3页
Information & Computer
关键词
无人机遥感图像
深度神经网络
注意力机制
微小目标检测
UAV remote sensing images
deep neural networks
attention mechanisms
small object detection