摘要
概述了电机轴承故障诊断的新兴技术与发展趋势,介绍了深度学习、机器学习、信号处理等方法。每种技术都针对特定挑战提出解决方案,展现了电机轴承故障诊断领域的最新进展。探讨了未来研究的方向,包括深入研究电机轴承的故障机理、探索融合多种诊断方法的可能性、关注实时在线监测技术的发展以及拓展电机轴承故障诊断技术在其他相关领域的应用等。
Emerging technologies and trends in motor bearing fault diagnosis are reviewed,with a focus on deep learning,machine learning,and signal processing methods.Each technique proposes solutions to specific challenges,showing the latest progress in the field of motor bearing fault diagnosis.Future research directions are also explored,including in-depth study of the fault mechanisms of motor bearings,exploration of the possibility of integrating multiple diagnostic methods,focusing on the development of real-time online monitoring technology,and expanding the application of motor bearing fault diagnosis technology in other related fields.
作者
郭卓
王潇男
常媛媛
Guo Zhuo;Wang Xiaonan;Chang Yuanyuan(Liaoning Technical University,Huludao Liaoning 125105,China;Liaoning University of Finance and Trade,Huludao Liaoning 125105,China)
出处
《现代工业经济和信息化》
2024年第9期120-121,126,共3页
Modern Industrial Economy and Informationization
关键词
电机轴承故障诊断
深度学习
机器学习
信号处理
技术发展趋势
motor bearing fault diagnosis
deep learning
machine learning
signal processing
technology development trend