期刊文献+

基于DBO-SVM的风力发电功率短期预测

Short-Term Prediction of Wind Power Generation Power Based on DBO-SVM
下载PDF
导出
摘要 大规模风力发电随机性较大,接入电网时造成负荷波动以及系统稳定性降低。对此提出基于蜣螂优化算法优化向量机模型的风力发电功率短期预测模型。利用DBO-SVM模型根据风向,温度,气压和湿度等因素完成对于风力发电功率的短期预测。 Large-scale wind power generation is characterized by high stochasticity,which causes load fluctuation and system stability degradation when connecting to the power grid.A short-term prediction model for wind power generation is proposed based on the dung beetle optimization algorithm(DBO)and vector machine model(SVM).The DBO-SVM model is used to predict the short-term wind power according to the wind direction,temperature,air pressure and humidity.
作者 徐思文 李卓函 韩滟赢 Xu Siwen;Li Zhuohan;Han Yanying(School of Electrical and Control Engineering,Liaoning Technical University,Huludao Liaoning 125000,China)
出处 《现代工业经济和信息化》 2024年第9期210-212,共3页 Modern Industrial Economy and Informationization
关键词 蜣螂优化算法 向量机 风力发电 Dung Beetle Optimization Algorithm vector machine wind power generation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部