摘要
This study reveals the temporal and spatial evolution characteristics of the winter nighttime urban heat island(UHI)effect in the case of Beijing,China.The land surface temperature(LST)is retrieved by radiative transfer equation by using the remote sensing data from Landsat ETM+/OLI_TIRS from 2007 to 2017 for the winter nighttime period,and LST is then divided by the mean-standard deviation method into different levels of thermal landscapes.A combination of the migration calculation of gravity center and multi-directional profile analysis is used to study the directional differentiation characteristics of LST and the migratory characteristics of the gravity center of UHI.Finally,the overall temporal and spatial evolution characteristics of winter nighttime surface urban heat island(SUHI)in Beijing are studied,and the possible reasons for the changes are discussed.Results show that Beijing's UHI effect first increased and subsequently decreased from 2007 to 2017.The winter heat island in the urban area developed from low-density agglomeration to high-density agglomeration to lowdensity diffusion.Additionally,the high-level thermal landscapes migrated to the southwest along with the city center of gravity,and the expansion rate is fastest in the southwest,which is directly linked to the changes in the urban construction land.Moreover,the overall spatial distribution of winter nighttime LST is high in the east and south and low in the west and north,and is influenced by topography,land cover,urbanization,anthropogenic heat,and other factors as well.
基金
supported by the Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology(No.6142A01210404)。