期刊文献+

Investigating computational models for diagnosis and prognosis of sepsis based on clinical parameters: Opportunities, challenges, and future research directions

原文传递
导出
摘要 This study investigates the use of computational frameworks for sepsis.We consider two dimensions for investi-gation-early diagnosis of sepsis(EDS)and mortality prediction rate for sepsis patients(MPS).We concentrate on the clinical parameters on which sepsis diagnosis and prognosis are currently done,including customized treatment plans based on historical data of the patient.We identify the most notable literature that uses com-putational models to address EDS and MPS based on those clinical parameters.In addition to the review of the computational models built upon the clinical parameters,we also provide details regarding the popular publicly available data sources.We provide brief reviews for each model in terms of prior art and present an analysis of their results,as claimed by the respective authors.With respect to the use of machine learning models,we have provided avenues for model analysis in terms of model selection,model validation,model interpretation,and model comparison.We further present the challenges and limitations of the use of computational models,providing future research directions.This study intends to serve as a benchmark for first-hand impressions on the use of computational models for EDS and MPS of sepsis,along with the details regarding which model has been the most promising to date.We have provided details regarding all the ML models that have been used to date for EDS and MPS of sepsis.
出处 《Journal of Intensive Medicine》 CSCD 2024年第4期468-477,共10页 重症医学(英文)
  • 相关文献

参考文献3

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部