期刊文献+

机器学习的著作权侵权判定:超越非表达性使用理论

On the Determination of Copyright Infringement in Machine Learning:Beyond the Non-Expressive Use Theory
下载PDF
导出
摘要 针对人工智能机器学习的著作权侵权判定难题,近期引人注目的非表达性使用理论根据“表达性机器学习”和“非表达性机器学习”的类型化方法划分侵权责任,并提倡禁止人工智能模仿特定作者的个人创作风格。然而,复制权的目的解释、历史解释和判例分析表明,非表达性使用理论未能走出长久以来“实施复制即侵权”的理论误区,面临逻辑、法理和现实层面的三重困境。对此,应当对非表达性使用理论进行扬弃,重构机器学习的著作权侵权判定标准,以公众接触原作品表达的高度盖然性取代“实施复制即侵权”的形式主义理念。 Regarding the difficult issue of determining copyright infringement in the machine learning of artificial intelligence(AI),the theory of the non-expressive use which has recently attracted significant attention delineates the infringement liability based on the method of categorizing machine learning into"expressive one"and"non-expressive one",and advocates for prohibiting AI from imitating the personal creative style of specific authors.However,the teleological interpretation,historical interpretation and case-based analysis of the reproduction right reveal that the theory of non-expressive use fails to overcome the long-standing misconception that"carrying out the reproduction equals infringement",facing three-faceted predicaments at the logical,jurisprudential,and practical levels.Thus,it is necessary to critically assimilate the theory of non-expressive use,re-establish a new standard for determining copyright infringement in machine learning,replace the formalistic notion of"carrying out reproduction equals infringement"with the high probability of public access to the expression of the original work.
作者 涂藤 TU Teng
出处 《政治与法律》 北大核心 2024年第10期162-176,共15页 Political Science and Law
关键词 机器学习 人工智能 侵权判定 非表达性使用 高度盖然性 Machine Learning Artificial Intelligence Infringement Determination Non-expressive Use High Probability
  • 相关文献

二级参考文献101

共引文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部