期刊文献+

基于医院信息系统多源时序数据的急性脑卒中预测研究

Research on Acute Stroke Prediction Based on Multi-source Temporal Data from Information Systems in Hospitals
下载PDF
导出
摘要 目的 开发能够实时预测急性脑卒中的模型,辅助医生提高脑卒中的早期识别。方法 利用无感式智能床实时监测数据,结合医院多源信息系统时序数据,通过逻辑回归、随机森林和门控循环单元(GRU)等人工智能算法,构建脑卒中实时预测模型。采用夏普利可加性解释值对重要预测因子进行排序。结果 短暂性脑缺血发作和急性缺血性脑卒中预测的最佳表现均来自GRU模型,受试者工作特征曲线下面积(AUROC)分别为0.79和0.94,急性大血管闭塞性缺血性脑卒中预测的最佳表现来自随机森林模型,AUROC为0.89。年龄、性别、疾病史以及血压、呼吸、脉搏对脑卒中的发生是重要的。结论 本研究通过结合医院信息系统多模态时序数据有效地识别了急性脑卒中,并揭示了脑卒中常见危险因素外的重要预测因子。 Objective To develop a model capable of providing real-time predictions for acute stroke and assist doctors to improve the early identification of stroke.Methods We constructed real-time stroke prediction models by integrating continuous monitoring data from non-invasive smart beds with temporal data from multi-source hospital information systems.Artificial intelligence algorithms such as logistic regression,random forest,and gated recurrent units(GRU)were employed to build these models.The Shapley additive explanations values were used to rank the importance of predictive factors.Results The best performance for predicting transient ischemic attacks and acute ischemic stroke were achieved by the GRU model, with area under the receiver operating characteristic curve (AUROC) values of 0.79 and 0.94, respectively. For acute large vessel occlusive ischemic stroke, the random forest model demonstrated the best performance, with an AUROC of 0.89. Age, gender, medical history, along with blood pressure, respiration, and pulse rate were identified as significant factors influencing the occurrence of stroke. Conclusion This study effectively identified acute stroke by combining multimodal temporal data from hospital information systems, and revealed important predictive factors beyond common risk factors for stroke.
作者 兰蓝 罗佳伟 李瑞 管玲 王伊龙 LAN Lan;LUO Jiawei;LI Rui;GUAN Ling;WANG Yilong(Information Management and Data Center,Beijing Tiantan Hospital,Capital Medical University,Beijing 100070,China)
出处 《中国卫生信息管理杂志》 2024年第5期770-776,共7页 Chinese Journal of Health Informatics and Management
基金 国家自然科学基金青年项目“基于无感式实时呼吸和心率监测脑卒中智能预警模型构建与应用研究”(72204169)。
关键词 多源信息系统 人工智能 脑卒中 预测 multi-source information systems artificial intelligence stroke prediction
  • 相关文献

参考文献4

二级参考文献13

共引文献286

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部