摘要
Large Seebeck coefficients induced by high degeneracy of conduction band minimum,and low intrinsic lattice thermal conductivity originated from large lattice vibrational anharmonicity render Mg_(3)Sb_(2)as a promising n-type thermoelectric material.Herein,we demonstrated unique concentration-dependent occupation behaviors of Cu in Mg_(3.4)Sb_(1.5)Bi_(0.49)Te_(0.01)matrix,evidenced by structural characterization and transport property measurements.It is found that Cu atoms prefer to enter the interstitial lattice sites in Mg_(3)Sb_(2)host with low doping level(Mg_(3.4)Sb_(1.5)Bi_(0.49)Te_(0.01)+x%Cu,x<0.3%),acting as donors for providing additional electrons without deteriorating the carrier mobility.When x is larger than 0.3%,the excessive Cu atoms are inclined to substitute Mg atoms,yielding acceptors to decrease the electron concentration.As a result,the electrical conductivity of the Mg_(3.4)Sb_(1.5)Bi_(0.49)Te_(0.01)+0.3%Cu sample reaches 2.3×10^(4)S/m at 300 K,increasing by 300%compared with that of the pristine sample.The figure of merit zT values in the whole measured temperature range are significantly improved by the synergetic improvement of power factor and reduction of thermal conductivity.An average zT∼1.07 from 323 K to 773 K has been achieved for the Mg_(3.4)Sb_(1.5)Bi_(0.49)Te_(0.01)+0.3%Cu sample,which is about 30%higher than that of the Mg_(3.4)Sb_(1.5)Bi_(0.49)Te_(0.01) sample.
基金
supported by the National Key Research and Development Program of China(Nos.2018YFA0702100 and 2019YFA0210001)
National Natural Science Foundation of China(No.U21A2054 and 52072234)
K.Guo acknowledges the support from Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(No.202255464)。