期刊文献+

3D-printed hierarchical porous and multidimensional conductive network based on conducting polymer/graphene oxide

原文传递
导出
摘要 Designing ultrathick and hierarchical electrodes is effective to deal with the challenge of high areal capacity and high power density for lithium-ion batteries(LIBs)manufacturing.Here,a thick electrode with hierarchical porous and multidimensional conductive network is fabricated by 3D printing tech-nology,in which both the conducting polymer of poly(3,4-ethylene dioxythiophene):polystyrene sul-fonate(PEDOT:PSS)and graphene oxide(GO)play the dual roles as binders and conductive agents.As a consequence,the 3D-printed thick electrode(~900 mm)with a mass loading of~47 mg/cm^(2) exhibits a good rate capability of 122 mA·h/g at 2 C,a high areal capacity of up to 5.8 mA·h/cm^(2),and stable cycling performance of~95%capacity retention after 100 cycles.Moreover,the C-O-S bond is further confirmed by the spectral analysis and the DFT calculation,which not only hinders the stack of nanosheets but enhances the mechanical stability and electronic conductivity of electrodes.A stable covalent multidi-mensional conductive network constructed by 3D-printing technology provides a new design strategy to improve the performance of LIBs.
出处 《Journal of Materiomics》 SCIE CSCD 2024年第1期234-244,共11页 无机材料学学报(英文)
基金 supported by the Key Research of Gansu Province(21ZD4GA031) Development Program of Gansu Province(21YF5GA079) Excellent Postgraduate Innovation Star Project of Gansu Province(2022CXZX-422).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部