期刊文献+

An improved model combining machine learning and Kalman filtering architecture for state of charge estimation of lithium-ion batteries

原文传递
导出
摘要 Accurate state of charge(SOC)estimation of lithium-ion batteries is a fundamental prerequisite for ensuring the normal and safe operation of electric vehicles,and it is also a key technology component in battery management systems.In recent years,lithium-ion battery SOC estimation methods based on data-driven approaches have gained significant popularity.However,these methods commonly face the issue of poor model generalization and limited robustness.To address such issues,this study proposes a closed-loop SOC estimation method based on simulated annealing-optimized support vector regression(SA-SVR)combined with minimum error entropy based extended Kalman filter(MEE-EKF)algorithm.Firstly,a probability-based SA algorithm is employed to optimize the internal parameters of the SVR,thereby enhancing the precision of original SOC estimation.Secondly,utilizing the framework of the Kalman filter,the optimized SVR results are incorporated as the measurement equation and further processed through the MEE-EKF,while the ampere-hour integral physical model serves as the state equation,effectively attenuating the measurement noise,enhancing the estimation accuracy,and improving generalization ability.The proposed method is validated through battery testing experiments conducted under three typical operating conditions and one complex and random operating condition with wide temperature variations under only one condition training.The results demonstrate that the proposed method achieves a mean absolute error below 0.60%and a root mean square error below 0.73%across all operating conditions,showcasing a significant improvement in estimation accuracy compared to the benchmark algorithms.The high precision and generalization capability of the proposed method are evident,ensuring accurate SOC estimation for electric vehicles.
出处 《Green Energy and Intelligent Transportation》 2024年第4期1-11,共11页 新能源与智能载运(英文)
基金 Key Research and Development Program of Shaanxi Province(2023-GHYB-05 and 2023-YBSF-104).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部