期刊文献+

2010-2023年南京市发热伴血小板减少综合征流行特征和空间聚集性

Epidemiological characteristics and spatial clustering of severe fever with thrombocytopenia syndrome in Nanjing from 2010 to 2023
下载PDF
导出
摘要 目的了解南京市发热伴血小板减少综合征(SFTS)报告发病趋势和波及范围,分析空间分布模式,探测高发聚集区域和重点人群,指导制定科学防控策略和措施。方法通过“中国疾病预防控制信息系统”收集2010-2023年南京市报告SFTS病例信息,描述时间、人群和空间分布特征;利用Joinpoint回归分析报告发病率年度变化百分比(Annual percent change,APC);利用FlexScan空间扫描探测高发聚集区域。结果2010-2023年南京市报告SFTS 507例,APC为31.8%(95%CI:22.5%~41.9%,P<0.001),2023年报告发病率为1.42/10万(134例)。5-8月季节指数分别为2.7、2.1、3.0、1.3,共占76.1%。年龄中位数为66(IQR:55,73)岁,由2010-2011年的59岁,逐渐增加至2022-2023年的68岁(P<0.001),45岁及以上占94.1%;农民(63.7%)、家务及待业(14.2%)和离退人员(12.2%)共占90.1%。2010-2011年疫情波及4区11街道,2022—2023年增加至11区58街道;除2012-2013年外,全局空间自相关分析均Moran’s I>0(0.224~0.526,P<0.001),FlexScan扫描显示溧水区和江宁区的部分街道为一级聚集区域,2018-2023年浦口区4个街道为二级聚集区,2022-2023年六合区3个街道为二级聚集区,均P<0.05。结论南京市SFTS报告发病水平呈快速上升趋势,波及范围逐渐扩散,空间上呈聚集分布模式。建议加强医疗机构诊治技术和检测能力培训,强化高发地区监测、病例流调溯源和防蜱、防病知识宣教等。 This study was aimed at understanding the trends in,and scope of,severe fever with thrombocytopenia syndrome(SFTS)in Nanjing,analyzing the spatial distribution pattern,detecting high incidence cluster areas and key populations,and scientifically guiding prevention and control strategies and measures.We obtained data on SFTS cases from 2010 to 2023 in Nanjing from the China Disease Control and Prevention Information System,and described the time,population,and spatial distribution characteristics.We used joinpoint regression to calculate the annual percentage change(APC)in incidence,then used FleXScan spatial clustering scan analysis to explore spatial clustering areas at the street level.A total of 507 SFTS cases were reported from 2010 to 2023 in Nanjing.The APC was 31.8%(95%CI:22.5%-41.9%,P<0.001),and the reported incidence in 2023 was 1.42/100000(134 cases).The seasonal indices from May to August were 2.7,2.1,3.0,and 1.3,respectively,accounting for 76.1%of the total cases.The median age was 66(IQR:55,73)years,which gradually increased from 59 years in 2010-2011 to 68 in 2022-2023(P<0.001);94.1%of cases were in individuals 45 years or older.Farmers,homemakers/unemployed individuals,and retirees accounted for 90.1%.The epidemic area increased from 11 streets in four districts in 2010-2011 to 58 streets in 11 districts in 2022-2023.Except for 2012-2013,global spatial autocorrelation analysis showed positive Moran’s I values(0.224-0.526,P<0.001),and FlexScan scan indicated that several streets in Lishui District and Jiangning District were the most likely clusters.Four streets in Pukou District were the secondary clusters from 2018 to 2023,and three streets in Luhe District in 2022-2023 were the secondary clusters(all P<0.05).The reported incidence of SFTS in Nanjing showed a rapid upward trend,with spread of epidemic areas.The spatial distribution pattern was clustered.Strengthened training in diagnosis and treatment technology and detection ability of medical institutions,surveillance in high-incidence areas,tracing of case flow,and health education of tick and disease prevention knowledge are recommended.
作者 马涛 陈聪 丁松宁 徐庆 汪君君 王恒学 严子康 田梦圆 祝媛钊 刘慧慧 MA Tao;CHEN Cong;DING Song-ning;XU Qing;WANG Jun-jun;WANG Heng-xue;YAN Zi-kang;TIAN Meng-yuan;ZHU Yuan-zhao;LIU Hui-hui(Department of Acute Infectious Disease Control and Prevention,Nanjing Municipal Center for Disease Control and Prevention,Nanjing 210003,China;Department of Immunization Program,Wujin District Center for Disease Control and Prevention,Changzhou 213100,China;Jiangsu Field Epidemiology Training Program,Jiangsu Provincial Center for Disease Control and Prevention,Nanjing 210009,China;Department of Education and Training,Chinese Center for Disease Control and Prevention,Beijing 102206,China)
出处 《中国人兽共患病学报》 CAS CSCD 北大核心 2024年第9期841-847,共7页 Chinese Journal of Zoonoses
基金 南京市卫生科技发展项目(No.YKK22190) 中国疾控中心公共卫生领域卫生健康标准化前期研究项目(No.BZ2023-Q012)。
关键词 发热伴血小板减少综合征 流行病学特征 空间自相关 空间聚集性 监测 severe fever with thrombocytopenia syndrome epidemiologic characteristics spatial autocorrelation spatial clustering monitor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部