摘要
Two-dimensional(2D)metal oxide α-MoO_(3) shows great potentials because of its very high dielectric constant,air stability and anisotropic phonon polaritons.However,a method to produce ultrathin single crystallineα-MoO3 with high transferability for functional device architecture is lacking.Herein,we report on the controllable synthesis of ultrathinα-MoO_(3) single crystals via chemical vapor deposition(CVD)assisted by plasma pretreatment.We also carried out systematic computational work to explicate the mechanism for the slantly-oriented growth of thin nanosheets on plasma-pretreated substrate.The method possesses certain universality to synthesize other ultrathin oxide materials,such as Bi_(2)O_(3) and Sb_(2)O_(3) nanosheets.As-grownα-MoO_(3) presents a high dielectric constant(≈40),ultrathin thickness(≈3 nm)and high transferability.Memristors withα-MoO_(3) as the functional layers show excellent performance featuring high on/off ratio of approximately 104,much lower set voltage around 0.5 V,and highly repetitive voltage sweep endurance.The power consumption of MoO_(3) memristors is significantly reduced,resulted from reduced thickness of the MoO_(3) nanosheets.Single crystal ultrathinα-MoO3 shows great potentials in post-Moore memristor and the synthesis of CVD assisted by plasma pretreatment approach points to a new route for materials growth.
基金
The authors acknowledge the support from National Natural Science Foundation of China(Grant Nos.51902061,52072272,62090031).