摘要
由于海上多源数据具有量大异构、复杂离散、难以标注等特点,现有的海情分析处理手段难以充分发掘数据的潜在价值,生成可靠的情报产品。针对该问题,论文设计了海上多源数据融合运用的体系架构,并详细分析了架构中各层级需具备的能力;探讨了目标特征提取、信息融合及关联、目标行为规律挖掘与预测等关键技术;最后,提出了三种典型应用场景,为推动海战数据赋能提供参考。
Due to the fact that maritime multi-source data is characterized by large volume and heterogeneity,complexity and discrete,and difficult to label,the existing means of analyzing and processing maritime intelligence are difficult to fully explore the potential value of the data and generate reliable intelligence products.To address this issue,this paper designs a system architecture for maritime multi-source data fusion and analyzes in detail the capabilities required for each level in the architecture.It discusses key technologies such as target feature extraction,information fusion and correlation,and target behavioral law mining and predic-tion.Finally,three typical application scenarios are put forward to provide reference for promoting naval warfare data empowerment.
作者
龚诚
刘一飞
李旭宁
GONG Cheng;LIU Yifei;LI Xuning(No.91001 Troops of PLA,Beijing 100841;College of Weapons Engineering,Naval University of Engineering,Wuhan 430033)
出处
《舰船电子工程》
2024年第8期43-48,共6页
Ship Electronic Engineering
关键词
态势感知
大数据
多源信息融合
特征提取
数据挖掘
situational awareness
big data
multi-source information fusion
feature extraction
data mining Class Number TP311.13