期刊文献+

基于深度置信网络的电力市场需求预测算法

Electricity Market Demand Prediction Algorithm Based on Deep Confidence Network
下载PDF
导出
摘要 文章旨在研究并开发一种基于深度置信网络(Deep Belief Networks,简称DBN)的电力市场需求预测算法。随着电力市场的日益成熟和复杂,对电力需求的准确预测对于电力系统的稳定运行和电力市场的有效管理至关重要。深度置信网络作为一种高效的深度学习模型,其在特征提取和模式识别方面的优势使其成为电力市场需求预测的有力工具。 This article aims to study and develop an electricity market demand prediction algorithm based on Deep Belief Networks(DBN).With the increasing maturity and complexity of the electricity market,accurate prediction of electricity demand is crucial for the stable operation of the power system and effective management of the electricity market.As an efficient deep learning model,deep belief networks have advantages in feature extraction and pattern recognition,making them a powerful tool for predicting electricity market demand.
作者 王涛 WANG Tao
出处 《电力系统装备》 2024年第9期164-166,共3页 Electric Power System Equipment
关键词 深度置信网络 特征提取 模型训练 预测输出 电力需求预测 deep belief network feature extraction model training predictive output electricity demand forecasting
  • 相关文献

参考文献2

二级参考文献26

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部