摘要
在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换主干网络,提高了特征提取的效率,并在监控范围内实现准确实时的特征提取。引入FocalNeXt焦点模块,通过深度卷积和跳跃连接的结合,解决了遮挡问题和多尺度特征需求问题。采用Focal-DIoU作为边界框回归损失函数,在复杂情况下减少了误检的问题。实验结果显示,EFD-YOLO算法相较于YOLOv8n在mAP@0.5指标上提升了4.2%,在mAP@0.5:0.95指标上提升了2.5%,满足关键场所中实时检测打架斗殴行为的需求。
In today's society,fighting behavior detection technology is crucial for preventing violent incidents and conflicts.By integrating surveillance cameras with object detection,real-time monitoring of crowd activities becomes possible,effectively preempting potential threats.Based on YOLOv8,EFDYOLO employs EfficientRep to replace the backbone network,enhancing the efficiency of feature extraction and enabling accurate real-time feature extraction within the surveillance area.The introduction of the FocalNeXt focus module,through a combination of deep convolutions and skip connections,addresses occlusion issues and multi-scale feature requirements.Furthermore,Focal-DIoU is adopted as the bounding box regression loss function,reducing false detections in complex scenarios.Experimental results show that the EFD-YOLO algorithm outperforms YOLOv8n by 4.2%in the mAP@0.5 metric and 2.5%in the mAP@0.5:0.95 metric,making it suitable for real-time detection of fighting behaviors in critical locations.
作者
曹雨淇
徐慧英
朱信忠
黄晓
陈晨
周思瑜
盛轲
CAO Yu-qi;XU Hui-ying;ZHU Xin-zhong;HUANG Xiao;CHEN Chen;ZHOU Si-yu;SHENG Ke(School of Computer Science and Technology(School of Intelligence),Zhejiang Normal University,Jinhua 321004;College of Education,Zhejiang Normal University,Jinhua 321004,China)
出处
《计算机工程与科学》
CSCD
北大核心
2024年第10期1825-1834,共10页
Computer Engineering & Science
基金
国家自然科学基金(62376252,61976196)
浙江省自然科学基金重点项目(LZ22F030003)
国家级大学生创新创业训练计划项目创新训练重点项目(202310345042)。