期刊文献+

Methacrylated gelatin and platelet-rich plasma based hydrogels promote regeneration of critical-sized bone defects

原文传递
导出
摘要 Physiological repair of large-sized bone defects requires instructive scaffolds with appropriate mechanical properties,biocompatibility,biodegradability,vasculogenic ability and osteo-inductivity.The objective of this study was to fabricate in situ injectable hydrogels using platelet-rich plasma(PRP)-loaded gelatin methacrylate(GM)and employ them for the regeneration of large-sized bone defects.We performed various biological assays as well as assessed the mechanical properties of GM@PRP hydrogels alongside evaluating the release kinetics of growth factors(GFs)from hydrogels.The GM@PRP hydrogels manifested sufficient mechanical properties to support the filling of the tissue defects.For biofunction assay,the GM@PRP hydrogels significantly improved cell migration and angiogenesis.Especially,transcriptome RNA sequencing of human umbilical vein endothelial cells and bone marrow-derived stem cells were performed to delineate vascularization and biomineralization abilities of GM@PRP hydrogels.The GM@PRP hydrogels were subcutaneously implanted in rats for up to 4 weeks for preliminary biocompatibility followed by their transplantation into a tibial defect model for up to 8 weeks in rats.Tibial defects treated with GM@PRP hydrogels manifested significant bone regeneration as well as angiogenesis,biomineralization,and collagen deposition.Based on the biocompatibility and biological function of GM@PRP hydrogels,a new strategy is provided for the regenerative repair of large-size bone defects.
出处 《Regenerative Biomaterials》 SCIE EI CSCD 2024年第4期66-81,共16页 再生生物材料(英文版)
基金 funded by Donghua University Postgraduate Innovation and Entrepreneurship Ability Training Program(yjssc2023002) supported by Science and Technology Commission of Shanghai Municipality,China(grant numbers 20S31900900 and 20DZ2254900) Sino German Science Foundation Research Exchange Center,China(M-0263) China Education Association for International Exchange(2022181).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部