期刊文献+

Exploring visual quality of multidimensional time series projections

原文传递
导出
摘要 Dimensionality reduction is often used to project time series data from multidimensional to two-dimensional space to generate visual representations of the temporal evolution.In this context,we address the problem of multidimensional time series visualization by presenting a new method to show and handle projection errors introduced by dimensionality reduction techniques on multidimensional temporal data.For visualization,subsequent time instances are rendered as dots that are connected by lines or curves to indicate the temporal dependencies.However,inevitable projection artifacts may lead to poor visualization quality and misinterpretation of the temporal information.Wrongly projected data points,inaccurate variations in the distances between projected time instances,and intersections of connecting lines could lead to wrong assumptions about the original data.We adapt local and global quality metrics to measure the visual quality along the projected time series,and we introduce a model to assess the projection error at intersecting lines.These serve as a basis for our new uncertainty visualization techniques that use different visual encodings and interactions to indicate,communicate,and work with the visualization uncertainty from projection errors and artifacts along the timeline of data points,their connections,and intersections.Our approach is agnostic to the projection method and works for linear and non-linear dimensionality reduction methods alike.
出处 《Visual Informatics》 EI 2024年第2期27-42,共16页 可视信息学(英文)
基金 Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy–EXC-2075–390740016.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部