期刊文献+

Measurement of cryoelectronics heating using a local quantum dot thermometer in silicon

原文传递
导出
摘要 Silicon technology offers the enticing opportunity for monolithic integration of quantum and classical electronic circuits.However,the power consumption levels of classical electronics may compromise the local chip temperature and hence affect the fidelity of qubit operations.In the current work,a quantum-dot-based thermometer embedded in an industry-standard silicon fieldeffect transistor(FET)was adopted to assess the local temperature increase produced by an active FET placed in close proximity.The impact of both static and dynamic operation regimes was thoroughly investigated.When the FET was operated statically,a power budget of 45 nW at 100-nm separation was found,whereas at 216μm,the power budget was raised to 150μW.Negligible temperature increase for the switch frequencies tested up to 10 MHz was observed when operating dynamically.The current work introduced a method to accurately map out the available power budget at a distance from a solid-state quantum processor,and indicated the possible conditions under which cryoelectronics circuits may allow the operation of hybrid quantum-classical systems.
出处 《Chip》 EI 2024年第3期1-7,共7页 芯片(英文)
基金 a UKRI Future Leaders Fellowship[MR/V023284/1].
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部