期刊文献+

基于视觉提示词的耕地实例化分割方法

Instance Segmentation Method of Cultivated Land Based on Visual Prompts
下载PDF
导出
摘要 耕地是国家粮食安全的根本保证,基于遥感影像的耕地提取为耕地保护,遏制耕地“非农化”,防止“非粮化”提供基本技术支撑。为实现基于高分遥感影像的耕地精细化提取,基于目标检测技术和神经网络大模型(segment anything model,SAM),实现简单标注样本下的耕地实例化分割,提出了一种基于视觉提示词的耕地实例化分割方法(instance segmentation method of farmland based on visual prompts,ISFVP)。在提出的方法中,首先利用耕地目标检测网络检测出耕地的大概范围(以矩形框表示),然后将耕地所处的范围作为提示词输入到网络大模型SAM中,实现耕地范围的精细化提取。实验证明,该方法可从高分遥感影像中自动化检测出耕地,为耕地的精细化提取提供了一种可行的技术方案。 Cultivated land is the fundamental guarantee of national food security.Cultivated land extraction based on remote sensing images provides basic technical support for the protection of cultivated land,to stop any attempt to use it for purposes other than agriculture and specifically grain production.In order to realize the refined extraction of cultivated land based on high-resolution remote sensing images,we used the target detection technology and the large neural network segment anything model(SAM)to realize the instance segmentation of cultivated land under simple labeled samples,and proposed an instance segmentation method of cultivated land based on visual prompts.In the proposed method,we used the cultivated land target detection network to detect the approximate range of cultivated land(represented by a rectangular box)at first.And then,we input the range of cultivated land into the large network model SAM as a prompt word to realize the refined extraction of cultivated land range.Experimental result proves that this method can automatically detect cultivated land from high-resolution remote sensing images,and provide a feasible technical solution for the refined extraction of cultivated land.
作者 刘爱霞 张奇伟 郭进 罗亮 LIU Aixia;ZHANG Qiwei;GUO Jin;LUO Liang(Beijing Space View Technology Co.,Ltd.,Beijing 100089,China;Shandong Provincial Institute of Land Surveying and Mapping,Jinan 250100,China)
出处 《地理空间信息》 2024年第10期19-21,41,共4页 Geospatial Information
关键词 耕地 遥感影像 目标检测 神经网络大模型 cultivated land remote sensing image object detection neural network big model
  • 相关文献

参考文献8

二级参考文献65

  • 1刘咏梅,杨勤科,汤国安.陕北黄土丘陵地区坡耕地遥感分类方法研究[J].水土保持通报,2004,24(4):51-54. 被引量:9
  • 2邓劲松,王珂,沈掌泉,许红卫.基于特征波段的SPOT-5卫星影像耕地信息自动提取的方法研究[J].农业工程学报,2004,20(6):145-148. 被引量:22
  • 3吴炳方,张峰,刘成林,张磊,罗治敏.农作物长势综合遥感监测方法[J].遥感学报,2004,8(6):498-514. 被引量:126
  • 4孙晓霞,张继贤,刘正军.利用面向对象的分类方法从IKONOS全色影像中提取河流和道路[J].测绘科学,2006,31(1):62-63. 被引量:80
  • 5Ketting R L, Landgrebe D A. Computer classification of remotely sensed multi-Spectral image data by extraction and classification of homogenous object [J]. IEEE Transactions on Geoseicnce Electronics, 1976,14 (1) :19--26.
  • 6Argialis D P, Harlow C A. Computational image interpretation models: An overview and a perspective [J]. Photogrammettic Engineering and Remote Sensing, 1990,56(6):871-886.
  • 7Ton J, Sticklen J,Jain A K. Knowledge-Based segmentation of Land-sat images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(2) :223-231.
  • 8Lobo A, Chic O, Casterad A. Classification of mediterranean crops with multi-sensor data., per-pixel versus per object statistics and image segmentation [J]. International Journal of Remote Sensing, 1996(17) :2358-2400.
  • 9Hofamnn P. Detection informal settlements from IKONOS image data using methods of object oriented image analysis:an example from Cape Town(South Africa)[A]. Remote Sensing of Urban Areas/FEnerkundung in Urbanen Raumen[C]. 2001.41--42.
  • 10Qin Yu, Peng Gong,et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery [J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(7):799-811.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部