摘要
20多年的数学课程改革,“满堂灌”的课堂形态得到较大改变,但虚假探究现象仍较突出。新课改要求学生以实践的方式进行学科学习,展现思维的过程与结果,让“探究”迭代升级。数学学科实践是实现思维可视化的路径之一,思维可视化助力数学学科实践育人价值的彰显。基于对课标、教材、学情的准确把握,多样实践形式让思维“看得见”“看得清”“看得远”。围绕问题解决,以问题解决为导向,构建真实有意义的情境,激活学生认知及探究的心理,引导学生经历问题表征、策略探究、方法迁移、模型构建等可视化过程,发展数学思维素养。数学学科实践并不是数学学习的唯一方式,应根据学习内容与学习对象特点灵活选择多种学习方式,合理进行思维可视化,发展学生核心素养,实现学科育人功能。
Over the past two decades of mathematics curriculum reform,the traditional“teacher-centered lecturing”classroom format has undergone significant changes,but the phenomenon of superficial inquiry remains prominent.The new curriculum reform advocates learning through practical activities,emphasizing the presentation of both the thinking process and its results,aiming to upgrade the concept of“inquiry-based learning.”Mathematical practices serve as one of the pathways to make thinking visible,thus highlighting the educational value of these practices.With a precise understanding of curriculum standards,textbooks,and student needs,diverse practical approaches make thinking“visible”“clear”and“far-reaching.”Centered on problem-solving and guided by it,real and meaningful contexts are created to stimulate students’cognitive and inquiry processes.Students are guided through visual processes such as problem representation,strategy exploration,method transfer,and model construction,which contribute to the development of mathematical thinking skills.However,mathematical practices are not the only approach to learning mathematics.Various learning methods should be flexibly chosen according to the content and characteristics of the learners.Effective visualization of thinking should be employed to cultivate students’core competencies and achieve the educational goals of the subject.
作者
唐斌
王静
TANG Bin;WANG Jing(The Primary School Affiliated to Wuhou Experimental Middle School,Chengdu,Sichuan 610043,China)
出处
《教学研究》
2024年第5期86-92,共7页
Research in Teaching
基金
四川省普教科研资助金课题(SCJG20D026)
成都市教育科学规划课题(CY2023ZM15)。
关键词
核心素养
学科实践
实践育人
思维可视化
数学学科特质
core competencies
disciplinary practice
practical education
visualization of thinking
characteristics of mathematics discipline