摘要
近年来,以Ag_(2)S为代表的塑性热电材料研究取得显著进展.该类材料因具有较低的滑移势垒和较高的解理能,表现出优异的室温塑性,并可通过固溶优化实现塑性和热电性能的协同提升.最新研究表明,Mg_(3)Bi_(2)基单晶材料在塑性变形能力和室温热电性能方面综合表现更佳.微观结构表征及理论计算分析揭示了位错滑移在Mg_(3)Bi_(2)单晶塑性变形过程中的关键作用,特别是多个滑移系表现出较低的滑移势垒.这些发现不仅深化了对塑性热电材料微观变形机制的理解,还为优化材料性能和开发新型柔性热电器件奠定了重要基础.未来将这些材料应用于实际器件仍面临热稳定性、化学稳定性和界面接触等挑战,这些问题的解决将推动塑性热电材料在柔性电子领域的应用.
In recent years,significant progress has been made in the research of plastic thermoelectric materials,for example,Ag_(2)S-based alloys.These materials exhibit excellent room-temperature plasticity due to their low slipping barrier energy and high cleavage energy,with synergistic enhancements in plasticity and thermoelectric properties achievable through alloying and doping strategies.The latest study on Mg_(3)Bi_(2)-based single crystals demonstrated superior performance in terms of plastic deformation capability and room-temperature thermoelectric properties.Microstructural characterization and theoretical calculation have revealed the crucial role of dislocation glide in the plastic deformation process of Mg_(3)Bi_(2)single crystals,especially,the low slipping barrier energy observed in multiple slip systems.Importantly,the Te-doped single-crystalline Mg_(3)Bi_(2)shows a power factor of~55μW cm^(-1) K^(-2) and ZT of~0.65 at room temperature along the ab plane,which exceed those of the existing ductile thermoelectric materials.These findings not only deepen the understanding of microscopic deformation mechanisms in plastic thermoelectric materials but also establish an important foundation for optimizing material properties and developing novel flexible thermoelectric devices.Future applications of these materials in practical devices still face challenges in thermal stability,chemical stability,and interfacial contact.Addressing these issues will promote the application of plastic thermoelectric materials in the field of flexible electronics.
作者
徐波
田永君
Xu Bo;Tian Yong-Jun(State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China)
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2024年第20期1-6,共6页
Acta Physica Sinica