摘要
针对去除不同雨纹的同时恢复图像背景细节的问题,提出一种基于注意力机制及多尺度特征融合的图像去雨方法。该网络采用双分支结构,分别用于雨纹去除和背景恢复。雨纹提取模块采用跨空间学习的多尺度注意力机制,通过多尺度上下文信息捕捉、均值计算、权重计算和整体信息综合,帮助改善雨纹去除任务中的图像质量,提高去雨效果。背景恢复模块包括多尺度特征提取部分和特征融合部分,采用多个扩张卷积层,每个卷积层具有不同的扩张因子,以扩大感受野,提取多尺度的图像背景特征;使用大核卷积对提取的多尺度特征信息进行融合调整,从而更准确地进行背景恢复。在多个公开数据集上的实验结果表明:所提方法能够有效去除真实雨图像场景中的雨纹,同时可以更好地恢复图像背景的细节信息。
To restore background details while removing different rain patterns,an image rain re-moval method based on attention mechanism and multi-scale feature fusion is proposed.The net-work adopts a two-branch structure,which is used for rain stripe removal and background recovery respectively.The rain-stripe extraction module uses a multi-scale attention mechanism of cross-space learning to help improve the image quality in the rain-stripe removal task and improve the rain removal effect through multi-scale context information capture,mean calculation,weight calcu-lation and overall information synthesis.The background recovery module includes multi-scale fea-ture extraction part and feature fusion part,and adopts multiple extended convolution layers,each with different expansion factors,to enlarge the receptive field and extract multi-scale image back-ground features.Large nuclear convolution is used to fuse and adjust the extracted multi-scale fea-ture information,so as to recover the background more accurately.The experimental results on sev-eral public data sets show that the proposed method can effectively remove the rain lines in the real rain image scene,and can better recover the details of the image background.
作者
宋建辉
胡强强
刘晓阳
赵亚威
SONG Jianhui;HU Qiangqiang;LIU Xiaoyang;ZHAO Yawei(Shenyang Ligong University,Shenyang 110159,China)
出处
《沈阳理工大学学报》
CAS
2024年第6期28-33,共6页
Journal of Shenyang Ligong University
基金
辽宁省教育厅高等学校基本科研项目(LJKZ0275)
沈阳市中青年科技创新人才支持计划项目(RC210247)。
关键词
双分支去雨
多尺度特征融合
注意力机制
扩张卷积
double branch rain removal
multi-scale feature fusion
attention mechanism
extended convolution