摘要
研究了可数离散群在紧度量空间étale等价关系上的自同构作用。文章引入了自同构系统上连续强轨道等价的定义,证明了共轭的两个自同构系统一定是连续强轨道等价的,反之,在本质自由和离散群是顺从无挠的条件下,满足刚性条件的两个连续强轨道等价的自同构系统是共轭的。
This paper studies the automorphism actions of countable discrete groups on theétale equivalence relations on compact metric spaces.First,the notion of continuous strong orbit equivalence for automorphism systems is introduced and it is proved that two conjugate automorphism systems are continuously strong orbit equivalent.Conversely,under the conditions of essentially freeness and discrete groups being amenable and torsion-free,two continuously strong orbit equivalent automorphism systems satisfying the rigid condition are conjugate.
作者
羌湘琦
QIANG Xiangqi(School of Science,Jiangsu University of Science and Technology,Zhenjiang 212100,China)
出处
《南通大学学报(自然科学版)》
CAS
2024年第3期89-94,共6页
Journal of Nantong University(Natural Science Edition)
基金
国家自然科学基金青年科学基金项目(12401156)。
关键词
自同构系统
广群
连续强轨道等价
共轭
automorphism system
groupoid
continuous strong orbit equivalence
conjugacy