期刊文献+

基于IPSO-SVR的反导装备体系效能评估方法研究

Research on Effectiveness Evaluation Method in Anti-Missile Equipment System Based on IPSO-SVR
下载PDF
导出
摘要 鉴于反导装备体系运行机理复杂、结构不清难以选择合适的效能评估模型等问题,采用“数据驱动+深度学习”的方法对反导装备体系效能评估展开研究。结合反导装备体系作战过程,从探测跟踪、指挥控制、火力拦截和综合保障4个方面构建了反导装备体系效能评估指标;针对PSO算法容易陷入局部极值、早熟收敛等问题,提出改进型粒子群优化算法,对SVR参数进行优化,建立了IPSO-SVR效能评估模型;在大量反导装备体系实验数据抽取、处理、分析的基础上,对IPSO-SVR模型进行训练和学习,以此获得对反导装备体系效能的非线性拟合。实验结果表明:所提效能评估方法期望输出和实际输出之间误差非常小,拟合精准度高,具有较高的可靠性和可行性。 In view of the complex operation mechanism of anti-missile equipment system, the unclear structure which makes it difficult to select a suitable efficiency evaluation model, so the effectiveness evaluation of anti-missile equipment system is studied by the method of "data-driven + deep learning". Based on the operational process of the anti-missile equipment system, the evaluation index of the effectiveness of the anti-missile system is constructed from four aspects: detection and tracking, command and control, firepower interception and integrated support. To solve the problems of PSO algorithm, such as local extremum and premature convergence, an improved particle swarm optimization algorithm is proposed to optimize the parameters of SVR, and an IPSO-SVR efficiency evaluation model is established. On the basis of extracting, processing and analyzing a large number of experimental data, the IPSO-SVR model is trained and studied to obtain nonlinear fitting of the effectiveness of the anti-missile equipment system. The experimental results show that the proposed method has a very small error between the expected output and the actual output and it has high fitting accuracy, which means this method has high reliability and feasibility.
作者 赵海燕 周峰 杨文静 王瑞君 刘迪 ZHAO Haiyan;ZHOU Feng;YANG Wenjing;WANG Ruijun;LIU Di(Air Defense and Antimissile School,Air Force Engineering University,Xi’an 710051,China;College of Information and Communication,National University of Defense Technology,Wuhan 430014,China;Army Academy of Border and Coastal Defense,Xi’an 710043,China)
出处 《空军工程大学学报》 CSCD 北大核心 2024年第5期82-89,共8页 Journal of Air Force Engineering University
基金 国家自然科学基金(62001059) 陕西省自然科学基础研究计划面上项目(2023JCYB509)。
关键词 反导装备体系 效能评估 深度智能 IPSO SVR anti-missile equipment system effectiveness evaluation deep intelligence IPSO SVR
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部