期刊文献+

Groundwater chromate removal by autotrophic sulfur disproportionation

原文传递
导出
摘要 Chromate[Cr(VI)]contamination in groundwater is a global environmental challenge.Traditional elemental sulfur-based biotechnologies for Cr(VI)removal depend heavily on the synthesis of dissolved organic carbon to fuel heterotrophic Cr(VI)reduction,a bottleneck in the remediation process.Here we show an alternative approach by leveraging sulfur-disproportionating bacteria(SDB)inherent to groundwater ecosystems,offering a novel and efficient Cr(VI)removal strategy.We implemented SDB within a sulfur-packed bed reactor for treating Cr(VI)-contaminated groundwater,achieving a notable removal rate of 6.19 mg L^(-1) h^(-1) under oligotrophic conditions.We identified the chemical reduction of Cr(VI)via sulfide,produced through sulfur disproportionation,as a key mechanism,alongside microbial Cr(VI)reduction within the sulfur-based biosystem.Genome-centric metagenomic analysis revealed a symbiotic relationship among SDB,sulfur-oxidizing,and chromate-reducing bacteria within the reactor,suggesting that Cr(VI)detoxification by these microbial communities enhances the sulfurdisproportionation process.This research highlights the significance of sulfur disproportionation in the cryptic sulfur cycle in Cr(VI)-contaminated groundwater and proposes its practical application in groundwater remediation efforts.
出处 《Environmental Science and Ecotechnology》 SCIE 2024年第5期187-196,共10页 环境科学与生态技术(英文)
基金 the support from the National Natural Science Foundation of China(No.51978289,U23A2049) the Science and Technology Planning Project of Guangdong Province(2021A0505020010).
  • 相关文献

二级参考文献42

  • 1Ackerley D F, Gonzalez C F, Park C H, Blake R, Keyhan A, Matin A, 2004. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 70: 873- 888.
  • 2Ahluwalia S S, Goyal D, 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98: 2243-2257.
  • 3APHA, 1989. Standard Methods for the Examination of Water and Wastewater (18th ed.). Washington DC.
  • 4Ballatori N, 1994. Glutathione mercaptides as transport forms of metals. Advances in Pharmacology, 27: 271-298.
  • 5Basu M, Bhattacharya S, Paul A K, 1997. Isolation and characterization of chromium resistant bacteria from tannery effluents. Bulletin of Environmental Contamination and Toxicology, 58: 535-542.
  • 6Camargo F A O, Bento F M, Okeke B C, Frankenberger W T, 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. Journal of Environmental Quality, 32: 1228-1233.
  • 7Campos J, Martinez-Pacheco M, Cervantes C, 1995. Hexavalent chromium reduction by a chromate-resistant Bacillus sp. strain. International Journal of General Molecular Microbiology, 68: 203-208.
  • 8Campos V L, Moraga R, Yanez J, Zaror C A, Mondaca M A, 2005. Chromate reduction by Serratia marcescens isolated from tannery effluent. Bulletin of Environmental Contamination and Toxicology, 75: 400-406.
  • 9Carozzi N B, Kramer V C, Warren G W, Evola S, Koziel M G, 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology, 57: 3057-306.
  • 10Chardin B, Giudici-Orticoni M T, De Luca G, Guigliarelli B, Bruschi M, 2003. Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Applied Microbiology and Biotechnology, 63: 315-321.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部