摘要
Transient heatwaves occurring more frequently as the climate warms,yet their impacts on crop yield are severely underestimated and even overlooked.Heatwaves lasting only a few days or even hours during sensitive stages,such as microgametogenesis and flowering,can significantly reduce crop yield by disrupting plant reproduction.Recent advances in multi-omics and GWAS analysis have shed light on the specific organs(e.g.,pollen,lodicule,style),key metabolic pathways(sugar and reactive oxygen species metabolism,Ca2+homeostasis),and essential genes that are involved in crop responses to transient heatwaves during sensitive stages.This review therefore places particular emphasis on heat-sensitive stages,with pollen development,floret opening,pollination,and fertilization as the central narrative thread.The multifaceted effects of transient heatwaves and their molecular basis are systematically reviewed,with a focus on key structures such as the lodicule and tapetum.A number of heat-tolerance genes associated with these processes have been identified in major crops like maize and rice.The mechanisms and key heat-tolerance genes shared among different stages may facilitate the more precise improvement of heat-tolerant crops.
基金
supported by grants from the National Key R&D Program of China(2023YFD2303304)
the National Science Foundation of China(32272214)
the 2115 Talent Development Program of China Agricultural University,the Chinese Universities Scientific Fund(2024TC062)
the Pinduoduo-China Agricultural University Research Fund(PC2023B02006).