期刊文献+

基于注意力机制改进的YOLOv5绝缘子缺陷检测

Attention Mechanism-based Improved YOLOv5 Algorithm for Insulator Defect Detection
下载PDF
导出
摘要 提出了一种基于注意力机制改进的YOLOv5s检测方法,以提高绝缘子缺陷检测的准确率和效率。首先,在YOLOv5s网络模型的架构中,在其颈部(Neck)引入了空间与通道卷积块注意力模型(CBAM),目的是实现对缺陷区域的重点关注。同时,通过引入双向特征金字塔网络(BiFPN)进行优化改进,进一步完善了模型的性能。此外,对损失函数进行了优化,以进一步提高模型的整体训练效果。实验结果表明,改进的YOLOv5s算法相比原YOLOv5s算法对绝缘子缺陷检测的精准率提升了4.69%,召回率提升了2.56%,F1分数提升了4.09%,AP提升了5.16%。 This paper proposes an improved YOLOv5s detection method based on attention mechanism to give rise to accuracy and efficiency of insulator defect detection.First in the architecture of YOLOv5s network model,the spatial and channel convolutional block attention model(CBAM)is introduced in its neck to achieve the focus on the defect area.At the same time,the performance of the model is further improved by introducing bi-directional feature pyramid network(BiFPN)for optimization and improvement.In addition,the loss function is optimized to further improve the overall training effect of the model.The experimental results show that in the aspect of insulator defect detection,the accuracy,recall rate,F1 score,and AP of the improved YOLOv5s algorithm is increased by 4.69%,2.56%,4.09%,and 5.16%,compared to the original YOLOv5s algorithm.
作者 薛宇 曲永 闫好霖 王帅 XUE Yu;QU Yong;YAN Haolin;WANG Shuai(State Grid Henan Electric Power Company,Nanyang Power Supply Company,Nanyang 473005,China;Zhengzhou University of Light Industry,Zhengzhou 450000,China)
出处 《电工技术》 2024年第17期185-189,共5页 Electric Engineering
关键词 绝缘子缺陷检测 注意力机制 CBAM YOLOv5s BiFPN insulator defect detection attention mechanism CBAM YOLOv5s BiFPN
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部