期刊文献+

基于自适应金豺狼优化算法的巡检机器人路径规划

Inspection Robot Path Planning Based on Adaptive Golden Jackal Optimization
下载PDF
导出
摘要 为提升核环境巡检机器人移动路径规划效果,提出了基于自适应金豺狼优化算法(AGJO)的核环境巡检机器人路径规划新方法,并进行了实例分析。首先,介绍了GJO算法基本原理和改进策略,给出了AGJO算法流程;其次,通过3个基准测试函数进行了AGJO与GJO性能对比分析;最后,构建了巡检机器人工作的两种仿真场景和一种真实场景,利用AGJO进行路径规划。结果表明,AGJO算法得到的移动路径最短,计算效率最高,具有一定的优势。 In order to improve the path planning effect of inspection robot in nuclear environment,a new path planning method based on adaptive golden jackal optimization(AGJO)was proposed,and an example was analyzed.Firstly,the basic principle and improvement strategy of GJO algorithm are introduced,and the flow of AGJO algorithm was given.Secondly,the performance of AGJO and GJO was compared by three benchmark test functions.Finally,two simulation scenario and a real scenario of the inspection robot are constructed,and AGJO was used for path planning.The results show that the AGJO algorithm has the advantages of the shortest moving path and the highest computing efficiency.
作者 徐雯清 顾大德 刘有志 张余平 XU Wenqing;GU Dade;LIU Youzhi;ZHANG Yuping(Guangdong Power Grid Co.,Ltd.Guangzhou Power Supply Bureau Power Dispatching and Control Center,Guangzhou 510620,China;Tellhow Software Co.,Ltd.,Nanchang 330096,China)
出处 《核电子学与探测技术》 CAS 北大核心 2024年第5期955-962,共8页 Nuclear Electronics & Detection Technology
基金 南方电网广东广州供电局科技项目(030108KK52222002),项目名称:基于智能语义识别和高级安全防误的启动方案程序化操作技术研究。
关键词 金豺狼优化算法 自适应 核环境 机器人 路径规划 golden jackal optimization adaptive nuclear environment robot path planning

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部